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INTRODUCTION

Godel’s Theorem

Godel’s Theorem, more precisely Godel’s First Incompleteness Theorem, proves
that any consistent, sufficiently rich axiomatic system of ordinary arithmetic contains
statements that can be neither proved nor disproved. This theorem shatters the hope,
which many mathematicians had harbored, that a finite system of axioms and logic could
decide all mathematical propositions. Since the axiomatic approach of mathematics is
widely believed to be the only way to obtain certain knowledge, and since Godel’s The-
orem places a significant theoretical limit on the potential of this system to prove every-
thing, the theorem has had a profound impact on the philosophy of mathematics, and on
philosophy in general.

The mathematician and logician Kurt Godel (1906-1978) published his famous the-
orem in [G31a], but this reference is of little direct value, since the paper is one of the most
famous in the history of mathematics, and copies of the journal issue it was published in
have long disappeared into the hands of souvenir hunters. Fortunately, the article has
been republished and translated many times, including an approved English translation

[G31Db].

Gensler’s book on Godel’s theorem

Godel’s Theorem is technically difficult. Godel’s original article was written for his
fellow researchers. It assumes much background material that was known to researchers
of the time, and it uses a now-obsolete notation. Expositions of Godel’s Theorem since
that time have improved the situation by providing background material, alternative ex-
planations, and a current notation, but the topic is still usually reserved for graduate
study in symbolic logic.

Fr. Harry J. Gensler in his Gddel’s Theorem Simplified [Ge84] aims to make Godel’s
theorem accessible to a general undergraduate audience, without sacrificing rigor.
Gensler separates elementary material from technically advanced material and makes the
advanced material optional. He includes much background material, proceeds in very
easy steps when presenting the elementary material, uses a formula numbering scheme
that is simpler than Godel’s, and aims to write a complete set of formulas to construct the
“Godel formula”, the existence of which proves Godel’s Theorem.
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In the author’s opinion, Gensler has admirably succeeded in most of these aims.
The elementary material is very accessibile, and this alone makes it an excellect exposition
of Godel’s Theorem. However, there is a serious technical flaw, discussed in the next
section.

The need for revisions

Chapter V of Gensler’s book presents an overview of the construction of the Godel
formula, and Chapter VII presents a detailed set of formulas that are used to construct the
Godel formula. Gensler presents a very detailed and apparently rigorous series of formu-
las which he says can be used to generate the Godel formula. He rigorously constructs
the precursor to the Godel formula, which he calls the “father” of the Godel formula. Yet,
at the very end, he cuts the process short—he does not generate the Godel formula itself,
the “son” of the father formula. Moreover, the formulas he constructs do not allow one
to even prove that the Godel formula exists, much less construct it. This is a serious mat-
ter, since the validity of Godel’s Theorem completely depends upon the existence of the
Godel formula, which Godel originally proved by actually constructing it. Almost all of
Chapter VII would have to be deeply rewritten to adequately construct the Godel formula
using Gensler’s approach. Since the rest of Gensler’s treatment of Godel’s Theorem is so
admirable, the author has undertaken this task below.

In Chapter I (p. 1) Gensler paraphrases Godel’s Theorem as Arithmetic cannot be
reduced to any axiomatic system then carefully defines these terms (p. 2):

o Arithmeticis a system that includes adding and multiplying positive whole
numbers, variables, and simple logical operations.

e Axiomatic system includes axioms and rules of logical inference.

® Reduction means that every formula that is true in the language of the sys-
tem can be proved, but no false formula can be proved.

Gensler’s concept of reduction is different from Godel’s concept of completeness,
as Gensler briefly explains in Chapter VI (p. 64). A system is complete if every statement
can be either proved or disproved, i.e. for every statement, either it or its negation can
be proved. Reduction is weaker than completeness but still conveys the essence of the
theorem. This is examined in broader detail below.

Gensler’s book does not consider recursive functions or set theoretical constructs
such as transfinite numbers, which are addressed in Godel’s paper. We will also not touch
on these topics, since they are not central to the theme of Godel’s Theorem.

6 Introduction



Spelling of “Gddel” and other typographical issues

Godel’s Theorem Simplified was published in 1984 using an early word processing
system that had only a typewriter font. The book consistently omits the umlaut (two
dots) above the “0” in “Gddel”, spelling it “Godel”, even in the title. German orthography
requires, however, that umlauts not simply be omitted from German words. Whenever
it is not possible to type “d”, “6”, or “ii”, they should be written “ae”, “oe”, or “ue”.
This gives two proper forms of the name of the discoverer of the Theorem, “Godel” and

“Goedel”.

The typewriter font used in Gensler’s book also means that it does not use cer-
tain now-standard mathematical symbols. For instance, the book uses “v”, “-”, and “E”
instead of v, =, and 3. This document uses an updated version of the notation of the book.

These deficiences are rectified in Gensler’s later books, which use modern word
processing systems. One such book is Gensler’s Introduction to Logic [Gel0], which on
pages 345-350 contains a condensed version of the main argument in Godel’s Theorem
Simplified in standard mathematical notation. This later book of Gensler cites his earlier
book as Godel’s Theorem Simplified, with the correct umlaut in “Godel”.
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SYSTEMS AND THEIR LANGUAGES

Systems

Godel’s Theorem applies to a formal mathematical system, which comprises:
® A language for expressing mathematical terms, statements, and proofs
e a set of axioms

e a set of inference rules, which specify how one or two statements can be
transformed into another statement

e the restriction of mathematical statements to positive whole numbers only.

To help put Godel’s Theorem in context, Gensler considers several alternatives to
the standard mathematical system, and shows how analogs of Godel’s Theorem holds
in some of these systems and not in others. The following is a brief summary of these
systems, including a system not on Gensler’s list:

e System C: the standard mathematical system in which Godel’s Theorem
holds

e System B: a system nearly identical to System C, in which Godel’s Theorem
does not hold

e System A: a system somewhat simpler than System B, in which Godel’s
Theorem does not hold

e System E: a very simple system, in which Godel’s Theorem holds

e System F: an even simpler system than System E, in which Gédel’s Theorem
does not nold (and which is not in Gensler’s book)
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Language of the systems

Each system uses a carefully constructed formal language to represent mathemat-
ical terms, statements, and proofs that are allowed in that system. The exact language
varies from one system to another. For reasons that will become clear later, it is important
to keep the number of symbols in each language to a minimum.

A string in any given language is a sequence of symbols that are used in that lan-
guage. A string is meaningful only if it follows a set of strict rules called grammar rules.

In each system, numbers are handled as follows:
e The only numbers that the language can represent are positive integers.

e Numbers are represented through repetitions of a stroke symbol /: 1 is rep-

resented by /,2by //,5by /////,10by //////////, etc.

e The operations allowed on these numbers vary from one system to another,
but never include more than addition, multiplication, and exponentiation,
using the symbols +, *, and *x.

e The only relation that is used is equality. A statement of equality is called a
formula. // = // is a true formula, and /// = // is a false formula.

e Variable names are constructed by repeating one symbol, n. Possible vari-
able names are thus n, nn, nnn, nnnn, etc.

Some systems include logical operators:

o A star (x) between formulas means logical conjunction. (* between numbers
means multiplication.)

e The symbol (=) before a formula means logical negation.

e Parentheses around a variable name mean a quantifier. The notation (n) n =
n, for example, means that n = n for all n. The quantifier (n) is elsewhere
often denoted (Vn), but the symbol V is omitted from the Gensler systems.

A comma (, ) is used to join formulas into sequences. A sequence forms a proof
when each formula in the sequence is either an instance of an axiom or the result of ap-
plying an inference rule to one or more preceding formulas. The last formula in a proof
sequence is a theorem, i.e. the sequence forms a proof of the theorem. For instance, in
System C, the sequence /// =///, // +/ = /// is a proof of the theorem 2 +1 = 3:
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/// = /// is an instance an axiom which states that any number is equal to itself, and
// +/ =/// is the result of applying to /// = /// an inference rule which states that
h + / is interchangable with h/ for any number h.

The language of each system can be extended by other symbols which are short-
cuts into the formal language. For instance, logical disjunction is introduced by defining
aV b as ~(-a * -b), where a and b are formulas. Similarly, the existential quantifier no-
tation (3u) p(u), where u is a variable and p(u) is a formula involving u, is defined as

=(u) ~p(w).
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SYSTEMS E AND F AND
THEIR INTERPRETATIONS

System F

Systems E and F are so important to the proper understanding of Gédel’s Theorem
that we will examine them here in detail. We start with the simplest system, System F.

There are only two symbols in the language:

/ =

There are two grammar rules:
1. A string consisting of one or more / is a numeral.
2. A string of the form x = y, where x and y are numerals, is a formula.

There is only one axiom: x = x for any numeral x. Instances of this axiom include

/=1,1/=1/ et

There are no inference rules. Inference rules occur in Systems A and B and in
System C.

It is crucial to understand the difference between the axiom and the formula
(x) x = x. The latter formula is not possible in this system, because the language of
this system does not include quantifiers. The axiom x = x is actually an axiom schema: it
stands for any of an infinite number of formulas of this form, each of which is called an
instance of the axiom. In other words, the axiom allows us to state that any one number
is equal to itself, but it does not allow us to state that all numbers are equal to themselves.

Therefore:

e Only formulas of the form x = x are true, and these are all instances of the
axiom.

e Since there are no inference rules, proofs can consist of only one formula,
which must be an instance of the axiom, namely a formula of the form x = x
for some numeral x.

e These formulas are the only possible theorems.
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e This system is complete (all theorems expressible in the language of the
system can be proved within the system) and sound (all theorems that the
system proves are true).

e Godel’s Theorem does not hold in this system.

System E

System E adds quantifiers to System F.

There are five symbols in the language:
/() = n
where the interpretation of () is only for quantifiers, not for grouping.

There is only one axiom, which is identical to the axiom of System F: x = x for any
numeral x.

There are four grammar rules:
1. A string consisting of one or more / is a numeral and a term.
2. A string consisting of one or more  is a variable and a term.
3. If x and y are terms, then a string in the form x = y is a formula.
4. If v is a variable and f is a formula, then a string in the form (v) f is a
formula.

As in System F, there are no inference rules.
The following types of formula are possible:

e x =y, where x and y are numerals

(nyn=n

(n) n = x for some numeral x
e (n) x = n for some numeral x
Of these, the following are true:
e XxX=2x
e (nyn=n

As in System F, in System E:
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e There are no inference rules, so proofs can consist of only one formula,
which must be an instance of the axiom, namely a formula of the form x = x
for some numeral x.

e These formulas are the only possible theorems.
Unlike System F, in System E:

e The language allows us to formulate the obviously true formula (n) n = n,
but it is not a theorem. It cannot be proved from the axiom. The axiom
can prove any individual instance of this formula, but it cannot prove the
general formula.

e Godel’s Theorem does hold in this system.

From this consideration of Systems E and F, we see that a system can easily be
made irreducible by adding symbols to the language that are not mentioned in the ax-
ioms. Reduction is the exception for axiomatic systems, not the rule.

Interpretations of Systems E and F

A comparison of Systems E and F shows that the language of a system of arithmetic
may allow the formulation of true formulas which the axioms are not able to prove. Now
we consider the role of interpretation to see that the truth of formulas in any system
depends on the context in which the language of the system is used.

The consideration of Systems E and F above stated that (1) n = n is obviously true,
but in actuality it is possible to give alternate interpretations of the language of these
systems in which this formula is not true. Below are a few possible interpretations.

Interpretation 1: The standard interpretation. Quantifiers range only over the pos-
itive integers, and x = y has its usual meaning. (n) n = n is obviously true in this
interpretation.

Interpretation 2: Quantifiers range over all integers, including positive, negative,
and zero. x = y means that x and y are both positive and equal. The axioms of systems E
and F are true, because they correctly equate positive integers to themselves, but (n) n =n
is not true, because when n is negative, (n) n = n is false.

Interpretation 3: Quantifiers range over positive integers only. x = y means that x
and y are both even and equal. Some instances of the axiom of Systems E and F are true,
but others are false.

Systems E and F 13



Interpretation 4: Quantifiers range over all integers. x = y means that both x and
y are negative and equal. There are values of n for which (n) n = n, but they are all
negative. All instances of the axioms of systems E and F are false—in fact all possible
formulas in these systems are false.
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SYSTEMS A and B

Outline of Systems A and B

System A corresponds roughly to primary school arithmetic and is called the arith-
metic of addition. It includes addition of positive integers, but not subtraction, multipli-
cation, division, exponentiation, variables, logical operators, or quantifiers. As we will
see, Godel’s Theorem does not hold in this system.

System B corresponds roughly to grade school arithmetic and is called as lower
arithmetic. It includes addition, multiplication, and exponentiation of positive integers,
but not subtraction, division, variables, logical operators, or quantifiers. We will see that
Godel’s Theorem also does not hold in this system.

System C is the standard system in which Godel’s Theorem holds and is dealt with
in the next chapter, System C.

System A

System A contains statements of equality, with addition as a numeric operator.

There are five symbols in the language:

/) + =
where the interpretation of ( ) is only for grouping, not for quantifiers.

There is only one axiom, which is identical to the axiom of Systems E and F: x = x
for any numeral x.

There are three grammar rules:
1. A string consisting of one or more / is a numeral and a term.
2. If x and y are terms, then the string (x + y) is a term.
3. If x and y are terms, then the string x = y is a formula.

There are two inference rules:
1. For any terms x and y, the term (x + /) can be exchanged with x/.
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2. For any terms x and y, the term (x + y/) can be exchanged with
(x/ +y).

Terms may include branching to any level of complexity, such as:

///

/+//

/] +/

/+////

/+(/+//)

(/+ T+ T+ D)+ N+ 117+

The following types of formula are possible:
e 1 = v, where u and v are numerals
e 1 = x or u = x, where u is a numeral and x is a term that is not a numeral
e x =y, where x and y are terms that are not numerals
Of these, the following are true:
e 1 = u, where u is a numeral

e u = x or u = x, where u is a numeral and x is a term that can be transformed
into u by one or more applications of the inference rules

e x = y, where x and y are terms that can be transformed into the same
numeral by one or more applications of the inference rules

Using the inference rules, the symbols +, (, and ) can be eliminated from any term,
leaving only / and =. This can be used to transform any formula into the form u = v. If
u and v are the same numeral, then the transformed formula is an instance of the axiom.
Under the standard interpretation of the symbols, such a formula is true. By reversing
this process, any instance of the axiom can be transformed into a true formula.

Since this can be done for any formula expressible in the language of System A,
any true formula that is expressible in the language of System A can be proved, and any
formula that can be proved is true; no false formula can be proved.

System A is therefore reducible (every true theorem can be proved and every prov-
able theorem is true). Godel’s Theorem does ot hold in System A.
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System B

System B adds multiplication and exponentiation to System A.

There are six symbols in the language:

/() 4 ok =

where the interpretation of ( ) is for grouping only, * means multiplication, and ** means
exponentiation.

There is only one axiom, which is identical to the axiom of Systems A, E, and F:
x = x for any numeral x.

There are five grammar rules:
1. A string consisting of one or more / is a numeral and a term.
2. If x and y are terms, then the string (x + y) is a term.
3. If x and y are terms, then the string (x * y) is a term.
4. If x and y are terms, then the string (x * xy) is a term.
5. If x and y are terms, then the string x = y is a formula.

There are six inference rules:
1. For any terms x and y, the term (x + /) can be exchanged with x/.
2. For any terms x and y, the term (x + y/) can be exchanged with
(x/ +y).
. For any term x, the term (x * /) can be exchanged with x.
. For any terms x and y, the term (x * /y) can be exchanged with
((x*y +2).
. For any term x, the term (x * *1) can be exchanged with x.
. For any terms x and y, the term (x * */y) can be exchanged with

((x % xy) * x).

=~ W

N Q1

Some examples of true statements are:

[+ =17/
[]*/11=111117
[/ xx/]]=//111]]/
[ xx(/+//)=1//*//]]
[1]xx/]=//]1]+//]/

Systems A and B 17



The same types of formula occur in System B that occur in System A. The inference
rules of System B allow the symbols +, *, (, and ) to be eliminated from any term, leaving
only / and =. If the transformed formula is an instance of the axiom, then the formula
is true under the standard interpretation. As in System A, reversing this process enables
any instance of the axiom to be transformed into a true formula.

Since this can be done for any formula expressible in the language of System B,
any true formula that is expressible in the language of System B can be proved, and any
formula that can be proved is true; no false formula can be proved.

Therefore, System B, like System A, is reducible (every true theorem can be proved
and every provable theorem is true). Gddel’s Theorem does not hold in System B.
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UNDERSTANDING SYSTEM C
AND THE GODEL FORMULA

Outline of System C

System C is the standard mathematical system of arithmetic. It is also known as
higher arithmetic since it corresponds to modern number theory. Like Systems A and
B, it ranges only over the positive integers, and it includes addition, multiplication, and
exponentiation. Unlike Systems A and B, it also includes logical operators, variables, and
quantifiers. Godel’s Theorem does hold in System C, and this system is the main subject
of Gensler’s version of Godel’s Theorem.

Although “arithmetic” is the standard term for this system, it is often misleading,
since the system includes variables and quantifiers, making it a form of algebra.

Systems A and B are weaker versions of System C. It was shown above that Godel’s
Theorem does not hold in these systems.

Basic technique for proving Godel’s Theorem in System C

The basic strategy for proving Godel’s Theorem is to construct a statement which
asserts its own unprovability. It essentially asserts This statement is not provable, but it is

stated in the language of System C, where it is is called the Gddel formula and is denoted
G.

The Godel formula is similar to the Liar’s Paradox, This statement is false. Godel
also proved an interesting result for the Liar’s Paradox; see The Liar Paradox below. The
Liar’s Paradox can neither be true nor false—if it’s true, then it’s false, but if it’s false, then
it’s true—and therefore such statements cause problems for standard logical systems.

However, the Godel formula does not cause these problems, because it does not
contradict itself—it only makes a statement about its provability. If the Godel formula
is true, then the language of System C contains an unprovable true statement, but if it’s
false, the language contains a provable false statement. In either case, System C is not
reducible.

To construct the Godel formula, we need:
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¢ alanguage that encodes formulas and proofs in arithmetic
e a formula in this language that tests the provability of a formula

e a way to construct a formula that refers to itself

Language that encodes formulas and proofs in arithmetic

The language has 9 symbols, each of which has a numeric ID from 1 to 9.

Simple symbols

Symbol ID Meaning

/ 1 One

+ 2 Addition

* 3 Multiplication, logical conjunction
( 4 Left grouping, quantifier

) 5 Right grouping, quantifier
= 6 Equals

- 7 Logical negation

n 8 Variable names

, 9 Formula separator

Compound symbols are pairs of simple symbols that would otherwise not be used
together. Each compound symbol has a meaning separate from the meanings of the sim-
ple symbols and so has an alternate symbol.

Compound symbols

Symbol Alternate Meaning

*k T Exponentiation

* = IF Conditional; see below
+ = THEN Conditional; see below
- = ELSE Conditional; see below
(= FOR Loop; see below

=) UNTIL Loop; see below

++ DO Loop; see below
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Conditional:

*:f+:x—|:y
or
IF f THEN x ELSE y

is a conditional expression. For example, IF //// = /// THEN / ELSE // can be para-
phrased “If 4 = 3, then 1, else 2,” and the expression as a whole has a value of 2.
Loop:
(F=u=x=)f++y
or
FOR u = x UNTIL f DO y

is a loop expression. This is evaluated as follows:

Initially store the value x to the variable u.

Evaluate p, which is a formula whose truth depends on u.

If p is true, go to step 6.

If p is not true, evaluate y, which is a term whose value depends on u. Update the value
of u to the value of y.

Go to step 2.

. The value of the whole loop expression is the final value of u.

For example, (n, = /, (nn)~(n+mnn =7), = n+ /) can be paraphrased “For n = 1 until
(m) ~(n+m=7)donx*2,” or “Starting with n = 1, multiply n by 2 until n is greater than
or equal to 7.” The expression as a whole has a value of 8.

Any string of symbols, including any formula, also has an ID number, composed
by stringing together the digits for each symbol into one number.

Formula Paraphrase ID number

[/+/11=/111/ 2+3=5 112,111,611,111

J/+)x//=///11/ +1)x2=6 4,112,153,116,111,111

nyn+n=//*n Foranyn,n+n=2n 48,582,861,138

(n)-(n+n=///%n) There is no n such that 485,748,286,111,385
n+n=3n

A formula sequence can also be given a numeric ID, using the formula separator
(,). A proof is a sequence in which each formula is either an instance of an axiom or
the result of applying an inference rule to a preceding formula. Each formula in a proof
sequence is a theorem. The following is a proof of the theorem 3 +2 = 5.

Understanding System C 21



Formula Justification

/1711 =1111/ 1. Instance of axiom Al
////+/=///// 2. Application of inference rule AR1 to formula 1

///+//=///// 3. Application of inference rule AR2 to formula 2

We obtain the ID of the proof by stringing together the formulas with the formula
separator.

Proof sequence: L1177 =11171,7777+/=//111,111+//=///1/
ID number: 1,111,161,111,191,111, 216,111,119,111, 211, 611,111

Constructing a formula that tests the provability of a formula

We now have a way to represent any formula and any proof as a number. Since the
language can test for the existence of numbers satisfying certain properties, it can be used
to test for the existence of the ID’s of formulas and proofs, i.e. provability of formulas.
From this point forward we work with numeric ID’s of formulas and proofs rather than
the formulas and proofs themselves.

The provability formula requires a series of definitions of shortcuts into the lan-
guage. For instance, we will need logical disjunction, so for any two formula ID’s p and
g, we define p V g as =(—p * =q). The full set of definitions leads us to define a function
TH (), where, for any formula ID p, TH (p) means that there exists a proof for the formula
which p represents.

Constructing a formula that refers to itself

We obtain a self-referential formula through a mechanism that Gensler calls father
and son.

First we define the son of a formula as the result of substituting the variable n in
the formula with the numeric ID of the formula. For example, the ID of the formulan =n
is 868, and the son of this formula is another formula, 868 = 868. Actually, we have used
shorthand notation for writing this second formula—if we wrote it out in full, it would
be a string 1737 characters long: 868 /’s, then one =, then another 868 /’s. The ID of this
formula would be a number 1737 digits long: 868 1’s, then a 6, then another 868 1's.

The second step is to write a father formula F, which asserts that the son of formula
number 7 is not a theorem.
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Lastly, we write the son of this formula, which we denote G. To obtain G, we
substitute the n in F with the ID for F. Then G asserts that the son of F is not a theorem.
But the son of F is G—so G asserts that G is not provable. G is the Godel formula. Its
existence proves Godel’s Theorem.
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FORMAL CONSTRUCTION OF THE
GODEL FORMULA IN SYSTEM C

Background

Chapter V of Gensler’s book [Ge84] presents an overview of the construction of
the Godel formula, and Chapter VII presents a detailed set of formulas that are used to
construct the Godel formula. Unfortunately, these formulas do not allow one to actually
construct the Godel formula, or even prove it exists. Most of Chapter VII, and some
material in earlier chapters, has to be deeply rewritten to construct the Godel formula.
This chapter undertakes this task.

In Chapter V, Gensler describes the Godel formula’s father and the Godel formula,
which he denotes F and G. At this point, Gensler says that G is a result of a process
performed on F, which he calls SON, but he does not give precise rules for SON, since
he saves a deep level of precision for Chapter VII.

In Chapter VII, we see a series of precise definitions and expect a definition of
SON as a function, the process promised in Chapter V, which would enable us to define
G as SON(F). However, the definition for SON(), and all the other formula definitions
in Chapter VII, are as relations. The connection between F and G can only be expressed
as SON (F, G). This relational form specifies a condition that G would have to satisfy if it
existed, but this is not enough to prove that G exists, much less construct G from F.

This revised version of Gensler’s definitions develops SON() as a function and
defines G as SON(F). This requires the revision of most of the definitions in Gensler’s
Chapter VII and some material in earlier chapters. It adds two new constructs to the
language, using the same symbol set, and three new inference rules.

General conventions

Gensler’s original definitions are in black.

The author’s revised definitions are in color.
Following each definition is a verbal paraphrase in italics.
=df means “is defined as”.
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Syntactic categories

language =df a given set of symbols and a syntax for combining them;
a formal language

system =df a given set of axioms and inference rules together with a language
in which they are expressed; a formal system

string =df a finite sequence of symbols of the language

term =df a string representing a number

formula =df a string representing a statement; a well formed formula or wff

sequence =df a series of formulas joined by the formula separator (,)

proof =df a sequence in which each formula is either an axiom or an

application of an inference rule to one or two previous formulas

theorem =df the last formula of a proof

Variable name conventions

The variables in the definitions below all refer to numeric ID’s. For example, we
say that a variable represents a formula when it acutally refers to the numeric ID of a
formula, rather than the sequence of symbols in the formula.

ab, ..., g denote dependent quantities

h,j denote (ID numbers of) numerals

k, m denote (ID numbers of) sequences

p.qr denote (ID numbers of) formulas

s denotes (an ID number of) a string

u denotes (an ID number of) a variable name
X,y denote (ID numbers of) terms
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Symbols

Symbol ID Meaning

/ 1 One; see below

+ 2 Addition; conditional, loop

* 3 Multiplication (between terms); logical conjunction

(between formulas); ** exponentiation; conditional

Left grouping; quantifier; loop

~  ~

Right grouping; quantifier; loop

Equals; conditional; loop
Logical negation; conditional

Variable names; see below

O 0 NI O Q1 W

Formula separator; loop

Numerals are denoted with repeated /, e.g. 5 is denoted //// /.

Variable names are formed with repeated n, e.g. n, nn, nnn, nnnn.
Quantifier: (u) means (Vu), i.e. that the following formula is true for all u.

Conditional: ¥ =f + =x— =y means that if p is true, then the value of the expression
is x, otherwise it is y.

Loop: (=u = x =) f ++ y means a looped evaluation of a value. Initially store the
value x to u. If p is true, then exit the loop. Otherwise evaluate y, and update u to the
value of y. Continue evaluating p and updating u until p is true. The value of the whole

expression is the final value of u.

In the definitions below, ID numbers of symbols are denoted with underlining: /
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Alternate symbols

The following symbols are used in lieu of the original symbols for clarity.

1 =df /
9 =df /////1/1/
10 =df //////////
x(u) =df term x involving variable u
p(u) =df formula p involving free variable u (Gensler’s notationis...u...)
[] =df ()
{} =df ()
) =df *x
pPAg =dfpxq
A used only for conjunction, not multiplication
pVq =df ~(=p A ~q)
P—4q =df -pvgq
(3x) p(x) =df ~(x) =p(x)
IF =df * =
THEN =df + =
ELSE =df - =
FOR =df (=
UNTIL =df =)
DO =df ++
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Operator precedence from high to low

N—

<>1ll+ %=

l

(x)
(3x)
IF THEN ELSE
FOR UNTIL DO

Grammar rules

28

W XN

—_
I

—_
—_

12.
13.

A string consisting of one or more / is a numeral and a term.

A string consisting of one or more n is a variable and a term.

If x and y are terms, then the string (x + y) is a term.

If x and y are terms, then the string (x * y) is a term.

If x and y are terms, then the string (x T y) is a term.

If x and y are terms, then the string x = y is a formula.

If f is a formula, then the string - f is a formula.

If f and g are a formulas, then the string f A g is a formula.

If v is a variable and f is a formula, then the string (v) f is a formula.
If f is a formula and x and y are terms, then the string IF f THEN x ELSE y is a
term.

. If u is a variable, x and y are terms, and f is a formula, then the string FOR u =

x UNTIL f DO y is a term.
If f is a formula, then the string f is a formula sequence.

If s and t are formula sequences, then the string s, t is a formula sequence.
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Axioms and their names

Al h=h

CP1 p—pAp

CP2 pAg—p

CP3 p—q) —[~(gAr) = ~(pAT)]
CQ1 [(w) p(w)] — [p(x)]

CQ2 () (p—q) — [(u) p— (u) q]
CQs3 p—(u)p

Cl x=y— [(p(x) = (p(y))]
CM1 (x+/)=/

CM2 (x+/)=Wy+1)—=x=y

CM3 {p(/) A () [p(u) = p(u+/)]} — (u) p(u)

Inference rules and their names

In the inference rules below:
peq means that p and g can be exchanged

p=q means that p can be changed to g
pgql=r means that p and g together can be changed to r

AR1 (h+/) e h/

AR2 (h+/j) & (h/ +])

BR1 (hx/)&h

BR2 (h*/j) e ((hxj)+h)

BR3 (h1j)eh

BR4 (R1/j) & ((h1])*h)

CCR1 (IF p THEN x ELSE y,p) = X
CCR2 (IF p THEN X ELSE ¥, p) = ¥
CPR [(p—4q)pl=4

CQR p=W)p

CLR (FOR u = x UNTIL p(u) DO y(u)) &

IF p(x) THEN [FOR u = y(x) UNTIL p(u) DO y(u)] ELSE x
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Function and relation definitions

GR(x,vy) =df (Ja) x =y +a
Whether x is greater than y

GE(x,y) =df GR(x +1,y)
Whether x is greater than or equal to y

N(s) =df (Ja) 9*xx+1=10"Ta
Whether the string s is a numeral

NUMC(s) =df FORn =1 UNTIL GR(n,10 T s) DO 10*xn+1

String s represented as a numeral

V(s) =df (3a) N(a) As=8%a
Whether the string s is a variable name

L(s) =df FORn =1 UNTIL GE(s,10 T n) A-GE(s,10 T (n+1)) DOn+1
Length of string s
$182... Sk =df s1 % (10 T (L(s2) + ...+ L(sk)))

+ 5% (10 7T (L(s3) +...+ L(sk)))

+...

+ k-1 % (10 T L(sk))

+ Sk

Concatenation of strings sq through sy

S(p, k,m) =df (3a) m = kpa
AN(k=,v(3b) k=,
Ala=,v(3b)a=,b,)
N —|(p = :)
A=(3b)p=,b

30

Godel formula in System C



A-@3b) p = b:
A=3b)(3c) p = b:c

Whether sequence m begins with sequence k immediately followed by formula p

P(p, k, m) =df (3a)(3b) m = kb A GR(k,a) A S(p, a, m)

Whether sequence m begins with sequence k and formula p follows later

WT(x,y,s) =df (3a) [(Ib) S(s,b,a) A (b)(c){S(b,c,a) —
{b=x=y
% (Hd)_[P(d, c,a) AN\b=-d]
Vv (3d)(Je) [P(d,c,a) /\_P(e, c,a)\b= (dﬁeZ]

v (3d)(3e) [V(d) A Ple,c,a) Ab = (d)e]}}]

Whether string s is a formula (wff) involving terms x and y

T(s) =df (3a) [(3b) S(s,b,a) A (b)(c){S(b,c,a) = N(b) v V(b)V
(3d)(3e) [P(d,c,a) A P(e,c,a) A
{b = (d+e)

Vb :_ (;*;)
Vb= EdIeZ

v [3f)WT(d,e, f)A
{b=(f=d=e)]Vv(3g) [V(g) Ab=(g=d,f=e)]}]}]}]

Whether string s is a term

W (s) =df (3a)(3b) [T(a) NT(b) A\WT(a,b,s)]
Whether string s is a formula (wff)

O(u,p,s) =df V(u) A W(p)
ANp=sv(da)lp= sa/\—|a=f/\—|(flb) a=zb]}

A{s=uV (Ja) [s:au/\—'azz/\—'(flb)a:bz]}

Whether variable name w occurs at the end of string s, which begins formula p
F(u,p,s) =df O(u,p,s) A—~(Fa) p = (u)a A
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(a)(b)(c) [W(a) Ab=cuan{p=bV(3d)p=bd}] -
[GR(c,s) VGR(s,b)]
Whether variable name w is free in formula p and occurs at the end of string s, which begins p

SUBIT (x,y,p) =df 1F [W(p) AT(x) AT(y)] THEN [IF (3b) (p = yb) THEN xb ELSE
{IF (3a) (p = ay) THEN ax ELSE
[IF (3a)(3b) (p = ayb) THEN axb ELSE p]}] ELSE p

SUBT (x,vy,p) =df FOR n =p UNTIL ~[W(p) AT(x) AT(y) A
(Ja)(AY) n =ybV n =ay Vv n = ayb] DO SUBIT (x,y,n))

The formula that results from substituting term x for term y in formula p

U(s,x,u,p) =df (3c) [c =su AF(u,p,c) A
(d)(e)(f) {[V(d) A f = sx NGR(e,s) N=GR(e, f)] —
F(d,p,e)}]

SUB1VF(x,u,p) =df 1F [W(p) AT(x) AV (u)] THEN [IF (3b) (p = ub) THEN xb ELSE

{1IF (a) (p = au) AU (a,x,u,p)] THEN ax ELSE
[IF (Ja)(3b) (p = aub) AU(a, x,u, p) THEN axb ELSE p]}]
ELSE p

SUBALLVF(x,u,p) =df FORn =p UNTIL =[W(p) AT(x) AV (u) A {(3a)(3b)
n=ubV[{n=auvn=aub} ANU(a,x,un)]}]
DO SUB1VF(x,u,n))

The formula that results from substituting term x for free variable u in formula p

A(p) =df W(p) A
(A1) (3a) [T(@) Ap = a=a]
v (32)@b)(3¢) [W (@) AW (b) A W(c) A
[CP1] {p = ~(an-(ana))
[CP2) Vp = ~((anb)A-a)
(cr3] Vp = ~(~(ar-b)A=(~(bAc)A=(cha)) ]
[CQ1] v (3a) (3b) (3¢)(3d) [a = SUBALLVE(c, d, b) A p = ~((d)bA~a)]
[CQ2] v (32)(3b)(3c) [V(a) AW (b) AW(c) A -

p = ~((a)~(bA-c)A-~((a)bA=(a)c))]
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[CQ3]
[C1]

[CM1]
[CM2]
[CM3]

V (3a)(3b) [V(a) AW(b) A~(3c) F(a,b,c) Ap = ~(bA~(a)b)]

v (3a)(3b)(3c) (3d)(3e) (3f) [a = SUBALLVE (b, e, f) A

d =SUBALLVF(c,e, f) ANp = ~(b=cA-—~(an-d))]

V (Ja) [T(a) Ap = l(a+/):/]
V (Fa)(3b) [T(a) NT(b) Ap ==((at+/)=(b+/)A~a=b)]

V (3)(3b) (3c)(3d) (3e) [b = SUBALLVF(/,a,c) Ae = (a+/) A

d=SUBALLVF(e,a,c) Np =-((bA(a)~(cA~d))A=(a)c)]}

Whether formula p is an axiom

R(p,q,7)
[AR1]

=df (3a)(3b)(3c)(3d) [p = SUBT(a,b, q) A

{[a=£c+_/)/\b=c£]
Va=(c+/d)Ab=(c/+d)]

v[azgc*_/)/\b:c]

Va=(cx/d) Ab = ((cxd)+c)]

V[a:SCT_/)/\b:c]
Va= Scﬂdz Ab= Scjd)_*c]

V [a=(IFr THEN c ELSEd) A b = ]

V [a = (IF -r THEN c ELSEd) A b = d]}]

Vip=~(gr(En)]
v (3a) [V(a) Ap = (a)q]
V (3a)(3b)(3c) (3d) [V (a) AT(b) AW (c) AT(d) A

(p = (IFSUBALLVF(b,a,c)THEN

(FOR a=SUBT (b, a,d) UNTIL ¢ DO d) ELSE b))]

Whether formula p is the result of applying an inference rule to formulas q and r

TH(p)

=df (3a) [(Ib) S(p,b,a) A (b)(c) {S(b,c,a) —
A(b) v (3d)(Je) [P(d,c,a) A P(e,c,a) ANR(b,d,e)]}]

Whether formula p is a theorem
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SON (p) =df SUBALLVF(NUM(p),n,p)

Son of formula p, the result of substituting n with the number for p in the formula p

F =df ~TH(SON ()

Father of the Godel formula, which states that the son of formula number n is not provable

G =df SON(F)
The Gadel formula, which asserts its own unprovability and thereby proves Godel’s

incompleteness theorem
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SYSTEM D

System D starts with System C and adds the Godel formula G from System C to
System D as an axiom. This gives us a modified definition of A(), which implicitly affects
the definitions of TH() and F and gives us a new G.

In general, it is obvious that adding symbols, axioms, and inference rules to System
C, while it affects the final form of the definitions for System C, does not affect the fact
that they exist. For any axiomatic system which includes System C, there is always some
Godel formula G which asserts its own unprovability, and the resulting system is always
incomplete.

Godel’s Theorem thus applies not just to System C but to a wide variety of ax-
iomatic systems, including widely used and practical systems such as those that handle
negative numbers, fractions, real numbers, complex numbers, algebra, calculus, differen-
tial equations, matrices, etc.
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COMPLETENESS, CONSISTENCY,
AND REDUCIBILITY

Reduction vs. completeness

Gensler paraphrases Godel’s Theorem as Arithmetic cannot be reduced to any ax-
iomatic system, but Gensler’s concept of reduction is somewhat different from Godel’s
concept of completeness. Gensler briefly explains this late in his book (Chapter VI, p. 64).
Here we examine this difference in greater detail and also examine the related concepts
of consistency and soundness.

System properties

We use the following definitions.

Statement means a formula in the language of the system.

A statement is provable if there is a proof of the statement that uses only the
axioms and inference rules of the system.

A system is complete if, for every statement, either it or its negation is prov-
able.

A system is reducible if every true statement is provable and no false state-
ment is provable.

A system is consistent if it is never possible to prove both a statement and
its negation.

A system is sound if it every provable statement is true.

A system is reflective if every true statement is provable. (Unfortunately, the
usual term for such a system is complete. We introduce the term reflective
to avoid the obvious collision with the above sense of complete.)

Below are symbolic definitions of the above five system properties. These defini-
tions use the same conventions and definitions as above:
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p denotes any formula in the language of the system

TH (p) means p is provable in the system (also denoted S F p, where S is
the system)

e - means negation
e A means conjunction
e V means disjunction.

We use these symbols even if the language of the system does not contain them,
since we determine these properties from outside the system.

complete =df (p) TH(p) v TH(-p)
A system is complete if every statement or its negation is provable.

consistent =df (p) ~(TH(p) ANTH(-p))
A system is consistent if a statement and its negation are never both provable.

sound =df (p) TH(p) —p

A system is sound if every provable statement is true.

reflective =df (p) p — TH(p)
A system is reflective if every true statement of the system is provable.

reducible =df (p) TH(p) < p
A system is reducible if every provable statement is true and every true statement is provable.

Relation of properties

Completeness and consistency are purely formal properties. They refer only to the
provability of the statements of a system, which as we have seen above depends only on
the axioms and inference rules of the system.

Soundness, reflectivity, and reducibility are not purely formal. They refer to the
truth or falsehood of the statements of the system, which, as we have also seen above,
depends on the interpretation of the language in addition to the formal properties of the
system. However, the systems we are examining have a canonical, standard interpreta-
tion. Unless otherwise specified, when we refer to a system having or not having one of
these properties, we assume the standard interpretation.
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A determination of completeness and consistency can be made only if we have a
negation operator in the system. The language of Systems A, B, E, and F do not include
negation, so we cannot determine whether they are complete or consistent.

A number of dependencies can be located within these five properties.
For all systems:

e sound A reflective < reducible

e unsound V unreflective < irreducible
For systems whose language includes negation:

e sound — consistent

e inconsistent — unsound

e reflective — complete

e incomplete — unreflective

e reducible — consistent A complete

e inconsistent V incomplete — irreducible

e sound A complete — reducible

e irreducible — unsound V incomplete

e reducible — consistent A sound

e inconsistent V unsound — irreducible

The Godel formula and System C

It is widely believed, but has not been proved, that System C is consistent and
sound. If this is the case, then the Godel formula is true, and System C is incomplete.

If the Godel formula is false, then System C contains an inconsistency. If this were
actually found, it would be big news. It would mean that the standard system that mathe-
maticians use to reason about positive whole numbers contains a serious flaw that would
render it suspect and all the proofs based on it questionable. However, even if this were
to happen, Godel’s Theorem would not fail!
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Hardly anyone believes that System C is actually inconsistent. For this reason,
many people claim that Godel’s Theorem shows that arithmetic is incomplete, when it
actually shows that arithmetic is either incomplete or inconsistent.

Godel’s Theorem does show that System C is irreducible. Here we show the two
paths for the Godel formula G that both lead to System C irreducibility.

e Gis true (widely believed) — G is unprovable — System C is incomplete —
System C is unreflective — System C is irreducible

e G is false (widely disbelieved) — G is provable — System C is inconsistent
— System C is unsound — System C is irreducible

Systems A,, B,, E,, and F,

Systems A,, B,, E,, and F, are modified forms of Systems A, B, E, and F respec-
tively. For each modified system, we make two additions: the symbol - for logical nega-
tion, and an axiom named AM which states that =(x + y) = y for any terms x and y.

These two changes enable us to state and prove inequalities of specific numbers.
Both the modified and original system allow us to prove equalities of specific numbers.
Given any two numbers, the modified systems allow us to prove that they are either equal
or unequal.

Systems E; and F;

Systems E; and F; are modified forms of Systems E, and F,. We form these sys-
tems by adding an axiom EX which reads =/ = /. Axiom EX is false in the standard
interpretation, and since its negation / = / is also provable in both these systems, each
system contains an inconsistency.

System attributes under the standard interpretation

System Complete Consistent  Sound Reflective Reducible
A — — Yes Yes Yes
A, Yes Yes Yes Yes Yes
B — — Yes Yes Yes
B, Yes Yes Yes Yes Yes
C No Yes? Yes? No? No
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D No? Yes? Yes? No? No
E — — Yes No No
E> No Yes Yes No No
E; No No No No No
F — — Yes Yes Yes
F, Yes Yes Yes Yes Yes
F; Yes No No Yes No
? = widely believed to be such but not proved
— = not applicable since language does not include negation
System attributes under alternate interpretations
Systems Interpretation Sound Reflective Reducible
A,B,F 1 Yes Yes Yes
2 Yes Yes Yes
3 No No No
4 No Yes No
Ay, By, B> 1 Yes Yes Yes
2 Yes Yes Yes
3 No No No
4 No No No
C 1 Yes? No? No?
2 No No No
3 No No No
4 No No No
D 1 Yes? No? No?
2 No No No
3 No No No
4 No No No
E 1 Yes No No
2 Yes Yes Yes
3 No Yes No
4 No Yes No
E, 1 Yes No No
2 Yes No No
3 No No No
4 No No No
E; 1 No No No
2 No No No
3 No No No
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4 No No
F; 1 No Yes
2 No No
3 No No
4 No No

? = widely believed to be such but not proved

Completeness, consistency, reducibility
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THE LIAR PARADOX

The proof of Godel’s Theorem constructs a self-referential statement, the Godel
formula, in the language of System C. The Godel formula asserts its own unprovability
and can be paraphrased This statement is not provable. Closely related to the Godel formula
is the Liar Paradox, the statement This statement is false.

In a little known proof, Godel showed that, unlike the Godel formula, the Liar
Paradox cannot be constructed in the language of System C. The proof is very short, once
we have all the definitions that we used to construct the Godel formula, and we present
it now.

The proof is by contradiction. Assume that there is a formula TR() in the language
of System C such that, for any formula ID p, TR(p) is true if and only if the formula
that p represents is true. This would mean that truth, which we have already seen to
be dependent on interpretation and determined outside of System C, can somehow be
determined by a formula written in the language of System C.

Then we use the SON() function defined above to construct a father-son pair K
and L, the father of the Liar Paradox and the Liar Paradox itself.

K =df -TR(SON (n))
L —df SON(K)

K says that the son of formula 7 is false. To obtain L, we substitute the n in K with
the ID for K. Then L states that the son of K is false. But the son of K is L, so L asserts
that L is false. If L is true, then it is false, and if it is false, then it is true. Since L cannot be
either true or false, there is no such formula TR() in the language of System C, and there
is no way to actually construct L in the language of System C.

This shows that the Liar Paradox cannot be constructed in the language of System
C or any similar formal mathematical language. Godel further argues that the Liar Para-
dox cannot be constructed in any language. This is because, as we saw before when we
considered interpretation, a statement of the truth of a statement cannot be made in the
language of the original statement.

This proof of the nonexistence of the Liar’s Paradox in a formal system appears
in section 7 of [G34], a set of notes from a lecture Godel gave in 1934 which were not
published until 1965. Alfred Tarski independently discovered and published the same
theorem with a different proof in his 1936 paper [T36], from which the theorem is gener-
ally known as Tarski’s Undefinability Theorem.
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