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Non-standardanalysis frequently simplifies substantially the proofs,
not only of elementary theorems, but also of deep results. This is true, e.g., also
for the proof of the existence of invariant subspaces for compact operators,
disregarding the improvement of the result; and it is true in an even higher de-
gree in other cases. This state of affairs should prevent a rather common mis-
interpretation of non-standard analysis, namely the idea that it is some kind of
extravagance or fad of mathematical logicians. Nothing could be farther from
the truth. Rather, there are good reasons to believe that non-standard analysis,
in some version or other, will be the analysis of the future.—Kurt Godel, [G74]

And there is every reason to believe that the codification of intuitive
concepts and the reinterpretation of accepted principles will continue also in
future and will bring new advances, into territory still uncharted.—Abraham
Robinson, [R68]

[Srinivasa Ramanujan] sometimes spoke of ‘zero” as the symbol of
the Absolute (Nirguna Brahman) of the extreme monistic school of Hindu
Philosophy, that is, the reality to which no qualities can be attributed, which
cannot be defined or described by words and is completely beyond the reach
of the human mind; according to Ramanujan, the appropriate symbol was the
number ‘zero’, which is the absolute negation of all attributes. He looked on
the number ‘infinity” as the totality of all possibilities which was capable of
becoming manifest in reality and which was inexhaustible. According to Ra-
manujan, the product of infinity and zero would supply the whole set of finite
numbers. Each act of creation, as far as I could understand, could be symbol-
ized as a particular product of infinity and zero, and from each such product
would emerge a particular individual of which the appropriate symbol was a
particular finite number. ... He spoke with such enthusiasm about the philo-
sophical questions that sometimes I felt he would have been better pleased to
have succeeded in establishing his philosophical theories than in supplying
rigorous proofs of his mathematical conjectures.—P. C. Mahalanobis, [Mn]



Unlike my colleagues, I think that an attempt to reconsider the idea
of an infinitesimal as a variable finite quantity is fully scientific, and that
the proposal to replace variable infinitesimals by fixed ones, far from hav-
ing purely pedagogical significance, has in its favor something immeasurably
deeper, and that this idea is growing roots in modern analysis. ...

I'have a clear recollection of my ideas on infinitesimal analysis. I was

a second-year student. When the professors announced that % is the limit of
a ratio, I thought: “What a bore! Strange and incomprehensible. No! They
won’t fool me: it’s simply the ratio of infinitesimals, nothing else.” ...

Imagine what would happen in physics if physicists held on to ear-
lier view on atoms, i.e. if they imagined a small sphere, a little ball of matter
covered with a shell. ...t is a sobering thought that if we had adhered to tra-
dition we would not have modern quanta! It is much the same in mathematics.
...I cannot but see a stark contradiction between the intuitively clear funda-
mental formulas of the integral calculus and the incomparably artificial and
complex work of their “justification” and their “proofs”. —N. N. Luzin, [Lu]
(emphasis his)

I'still remember the sight of [my high school caclculus teacher] stand-
ing in front of the blackboard w[h]ere she had drawn a wonderfully smooth
parabola, inserting a secant and telling us that Ay /Ax is its slope, until finally
she convinced us that the slope of the tangent is dy /dx where dx is infinitesi-
mally small and dy accordingly. ... This, I admit, impressed me deeply. Until
then our school Math had consisted largely of Euclidean geometry, with so
many problems of constructing triangles from some given data. This was o.k.
but in the long run that stuff did not strike me as more than boring exer-
cises. But now, with those infinitesimals, Math seemed to have more inter-
esting things in stock than I had met so far. ... [However, at the university,]
we were told to my disappointment that my Math teacher had not been up
to date after all. We were warned to beware of infinitesimals since they do
not exist, and in any case they lead to contradictions. Instead, although one
writes dy/dx ..., this does not really mean a quotient of two entities, but it
should be interpreted as a symbolic notation only, namely the limit of the quo-
tient Ay/Ax. I survived this disappointment too. ...[Later,] when I learned
about Robinson’s infinitesimals, my early school day experiences came to my
mind again and I wondered whether that lady teacher had not been so wrong
after all. The discussion with Abraham Robinson kindled my interest and I
wished to know more about it. Some time later there arose the opportunity
to invite him to visit us in Germany where he have lectures on his ideas, first
in Tubingen and later in Heidelberg, after I had moved there.—P. Roquette,
[R10]
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T TEAT AR AT HATHTE S Tedl e |

Anoraniyan mahato mahiyan atmasya jantornihito guhayam.

The Self is smaller than the smallest, bigger than the biggest, and is hidden in
a secret place of all creatures.—Katha Upanishad 2.20

TorT Taue dm SEme |
Yatha pinde tatha brahmande.
As is the point, so is the infinite—Charaka Samhita
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SUMMARY

This document extends the concepts of numeristics to analysis. Nu-
meristics is introduced in a separate document. Here a theory of analysis is
developed, based on infinitesimals which are all exactly equal to zero, and in-
finite values that are their reciprocals.

Fundamental concepts derive from Maharishi Mahesh Yogi’s Vedic
Mathematics, Charles Muses’s analysis of zero and infinity, and Abraham
Robinson’s nonstandard analysis. This theory uses multiple levels of sensitiv-
ity to extend real and complex arithmetic and evaluate equality. It then defines
derivatives and integrals solely in terms of elementary arithmetic operations
in this extended arithmetic.

Topics include:

Summary

Levels of sensitivity (p. 18), including multilevel numbers,
functions, and relations.

The fundamental theorems of calculus (p. 36).

Chain rule (p. 39), product rule (p. 40), derivatives of
trigonometric (p. 45) and exponential (p. 47) functions.

Limit (p. 50) defined in terms of sensitivity levels, and conti-
nuity (p. 52) in terms of these limits.

The natural logarithm developed as a polynomial (p. 48) in
the extended arithmetic.

Singularities (p. 68): jump singularities, removable singular-
ities, poles, essential singularities.

Complex analysis (p. 96): complex derivative, Cauchy inte-
gral formula, Taylor and Laurent series, complex poles, com-
plex essential singularities.

Calculus of variations (p. 110): functional derivative, prod-
uct rule, chain rule, transfer rule, application to straight line
theorem.
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An appendix (p. 139) compares equipoint analysis to other theories of
analysis: conventional analysis, nonstandard analysis, relative analysis, and
smooth infinitesimal analysis.
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HOW TO USE THIS DOCUMENT

This is not a textbook. This document describes a new system of cal-
culus and analysis, equipoint analysis, and shows the differences between it
and other systems of calculus and analysis. This document should therefore be
used as a supplement to other mathematical texts at that level.

At a minimum, this text assumes familiarity with calculus. Some mate-
rial is aimed at a more advanced level, such as complex analysis and function-
als. Those who are not familiar with these areas can skip these sections.

To understand equipoint analysis, it is essential to understand its total,
unrestricted arithmetic and the refinement of this arithmetic by expanding a
point to a space.

e The unrestricted arithmetic is developed in a separate docu-
ment on numeristics [CN].

e The refinement of this arithmetic is covered in this document
in the chapter on sensitivity (p. 18).

e The refined arithmetic is then used to redefine the derivative
and integral (p. 31).

Equipoint analysis is also used in an alternative theory of divergent
series, described in [CD], and this alternative theory is applied to repeating
decimals in [CR].

How to use this document 13



NON-CONVENTIONAL
THEORIES OF ANALYSIS

The conventional theory of analysis, based on set theory and limits,
was first developed in the 19th century. Since 1960, the following theories of
analysis have emerged as alternatives to classical analysis. Here we briefly
describe the history of these theories. See the appendix (p. 139) for a more
detailed description and comparison to equipoint analysis.

Nonstandard Analysis

Nonstandard analysis has its roots in the original development of calcu-
lus in terms of infinitesimals by Leibnitz in the 17th century. In the intervening
centuries, calculus was found to be very useful, but the explanation of it in
terms of infinitesimals did not satisfy very many mathematicians. With the in-
creasing demand for rigor in the 19th century, the theory of infinitesimals was
replaced by classical limits-based analysis.

In 1960, Abraham Robinson resurrected the theory of infinitesimals by
developing it as a modern set theoretic system he called nonstandard analy-
sis [R74]. Jerome Keisler used the principles of nonstandard analysis in his
elementary calculus textbook [KE] and undergraduate analysis text [KF]. Non-
standard analysis is widely considered to be a significantly simpler and more
elegant system than classical analysis, yet in the more than 50 years since its
introduction, it has not achieved widespread use, either in teaching or in re-
search.

Relative Analysis

More recently, relative analysis was developed by Karel Hrbacek,
Oliver Lessman, and Richard O’Donovan [H10], and used by O’'Donovan in
high school instruction [OD09]. This theory uses the terms ultrasmall and
ultralarge, whereas infinitesimal and infinite are used in nonstandard analysis.
Like nonstandard analysis, relative analysis has not achieved widespread use.
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Smooth Infinitesimal Analysis

Smooth infinitesimal analysis was developed by John L. Bell, in [BI]
and [BP], as a branch of synthetic differential geometry. It was originally de-
veloped by F. William Lawvere from category theory starting in 1967, but it
remained obscure until Lawvere’s 1998 article [La]. Like other alternatives,
smooth infinitesimal analysis has not achieved widespread use.

Non-conventional theories of analysis 15



ORIGIN OF EQUIPOINT ARITHMETIC

As explained in [CN], numeristics is based on the infinite and the expe-
rience of the silent, unmanifest point of infinity, samadhi or zero. In numeristics
this is conceptualized to give an arithmetic of 0 and oo, including total, unre-

9,andoo+1.

stricted multiplication and division by these quanities, such as 00

0
Some of these unrestricted operations, including o o — oo, and oo -

0, give rise to indeterminate expressions. Numeristics gives a value to these
expressions. This value is called the full class (), a class which includes all
numeric values.

In some cases, numeristic arithmetic yields an inderminate expression
in response to a question which clearly has a determinate result. One example
is the calculation of the slope of the tangent to a curve y = f(x) at a point a.

f)-fx) 0 _

cases, numeristic arithmetic needs to be refined to yield a determinate result.
This need is called the principle of determinacy, and it is implemented through
equipoint arithmetic.

Numeristic arithmetic alone yields the result

In this and similar works, the principle of determinacy is used in the
following;:

e Derivatives (p. 31).

Integrals (p. 33).

Offset derivatives (p. 68).

Class count comparisons (p. 125).

Divergent series in [CD].

Infinite left decimals in [CR].

Numeristics starts with the experience of infinity and zero as the point
of infinity. Equipoint arithmetic extends with the experience of the point open-
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ing up into a vast inner space distinct from and much richer than ordinary
space, and the contraction of this space back into ordinary space.

Equipoint analysis conceptualizes some aspects of the expanded space
by considering it as a space of points which all have the ordinary single value of
zero from the perspective of ordinary space, but which form a class of distinct
zeros from the perspective of the expanded space.

This allows us to do calculus with infinitesimals that are exactly zero,
and with numeric infinites that are reciprocals of these zeros. In the next chap-
ter, we formalize the multiple perspectives as levels of sensitivity.

Origin of equipoint arithmetic 17



SENSITIVITY

Unfolding zero

In equipoint analysis, every number has multiple levels of sensitivity.
At the level of least sensitivity, we distinguish real numbers, integers, rational
numbers, etc. as elements. When, as described in the previous chapter, zero
opens up into a space of zeros, these zeros are all exactly equal to zero at the
lowest level of sensitivity, but at a higher level of sensitivity, zero is multival-
ued, and the individual zeros are distinct elements. This is shown pictorially
below.

FIG. 1:
Real number line with
microscope view of unfolded 0

In Figure 1, we have the ordinary real number line with the real number
0 expanded into a space. When 0 is expanded into a space, we find multiple

18 Equipoint Analysis



distinct zeros in that space. We call the ordinary number line the folded space
and the expanded space the unfolded space around 0. Folded space, the folded
real number line, is the level of least sensitivity, and the unfolding shown in
this figure is a level of greater sensitivity. The bubble showing the infinitely ex-
panded space is called a microscope, and the original graph is called a macro-
scope.

The figure shows one of the unfolded zeros denoted as (/, and it also
shows some multiples of 0'. At the lowest of sensitivity, 0’ = 0-0' = 0, but at the
level of sensitivity of the unfolded space, 0' # 0-0', and 0’ € 0.

In the unfolded space of 0, each of the individual values of 0 in that

space has a well defined ratio with every other point in that space. For instance,
"

if 0" := 3 -0, then % = 3. This also means that the unfolded space is ordered

analogously to real space, e.g. 0" > 0’ at the unfolded level of sensitivity.

Finite multiples of each value in the unfolded space are distinct, but
squares and higher powers of any value in this space end up at the origin of
the unfolded space: 02 = 0" = 0- 0’ for any 0’ in the space and any n > 1.

We characterize a level of sensitivity by a sensitivity unit, a number
which does not lie at the origin. The sensitivity unit of the folded space is 1,
while the sensitivity unit of the unfolded space in Figure 1is 0'.

Since equality may depend on the sensitivity unit, we use the notation
=' for equality at the unfolded level, where 0’ is the unit, and reserve the sym-
bol = for equality at the folded level. More generally, we use the notation ~u,
usually as a subscript, to indicate a sensitivity unit u, and refer to it as sense
u. The default sense is 1: a = b means a =~ b, and a =~, b is equivalent to
a b

u u

These unfolded zeros are the infinitesimals of this system of analysis.
The name equipoint reflects the fact that these infinitesimals are all equal at
sense 1.

To summarize, at the folded level, sense 1, there is only one 0:
00=R-0=0%=0.

At the unfoldedlevel of sense (', there are multiple distinct values of 0:
O/ 75/ 0/2

Sensitivity 19



0#2.-0#0-0
0[2 :l 0/3 :/O'OI

Unfolding perfinite numbers

1
T
2. 2+0 2+2-0

FIG. 2:
Real number line with
microscope view of unfolded +2

Since a + 0 = a for any real a, every real number a can open up into a
space consisting of a plus zeros. Figure 2 shows this for a = 2. Just as we locate
0" within 0 and use it to perform a sensitive arithmetic within 0, we can also
locate a’ := a+ (0’ within a and use it as the base of a sensitive arithmetic within
a.

20 Equipoint Analysis



Following are examples of arithmetic within a finite real a.
a-a=0
a+0=a+0-0=a
a+0#a+0-0#a
(a+0)-(a+0-0)="(a+0)-a=0

a+0 € a-.

Unfolding infinite numbers

F1G. 3:
Line of infinities with microscope view of
real number line within 0 - oo’

Inversely to the expansion of a point of real space, the real number line
can collapse into a point within a space of infinities. This is shown in Figure 3.

When an infinite number is unfolded, the roles of microscope and
macroscope are reversed: The microscope shows folded finite space, and the
macroscope shows unfolded infinite space.

The class of folded infinite values, and the unfoldings derived from
them, depend on the type of infinite element extension. In the projectively

Sensitivity 21



extended real numbers, we defined oo := %, while in the affinely extended

reals, we defined oo :=

o

OOI — ||R*|OO/ — 0012 = o0
OOI ! 0012
o #2000 #0- 00
0012 ! 0013 ! OOIOO
-0’ 0-c0 oo’ 2.0 3.0

F1G. 4:
Line of infinities with
perfinite unfolding of oo’
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Figure 4 shows that each infinite element in the space of infinities un-
folds into a space in which finite numbers added to the infinite element are
distinct points.

0-0+T+,.0° 7

FIG. 5:
Line of infinities with
infinitesimal unfolding of oo’ + 1

Figure 5 shows that each point of infinite plus finite unfolds into a space
with infinitesimals added.

Sensitivity 23



Superunfolding

/0+[ T

f

_
—+
<

0+t0+1 T

20-0+1 T

Z0°0+0+1 T

210 N

FIG. 6:
Unfolding of 1+ 0,
superunfolding of 1

Within an unfolded space, any point can be unfolded again. This sec-
ond unfolding uses a sensitivity unit of 0 instead of 0. We can also call this an

unfolding with respect to 0.
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Figure 6 shows the superunfolding of 1 + 0/, which is itself an element
of the unfolded 1.

For each positive integral power 0", we can make an n-th unfolding or
unfolding with respect to 0™. This includes n = oo, which is called the ultimate
unfolding. The 0-th unfolding is the folded numbers. Any unfolding beyond
the first is called a superunfolding.

If two quantities are equal at all unfoldings, i.e. equal at the ultimate
unfolding, we use the symbol =, called equivalence. To define a variable or
expression as equivalent to another, we use the symbol :=.

0":=07?
0”=[R'0,=0"2:0
0// -y R - 01/ ! 0/12
0// ?éu 0//2

0// ?éll 2 . OII #Il 0 . OII

Power series enable us to evaluate various unfoldings of non-polynomial
functions:

/
er = 1
=~ 1+0x
OIZxZ
=~02 1+ le + 5

Olkxk
2

[oe]

Sensitivity extensions of standard classes

Starting with the projectively extended real numbers R, or the affinely

extended real numbers E, the above sections have described the unfolding of
this class to the 0’ sensitivity level. We denote this unfolded real number class

R or R. The unfolding was described in four steps:

Sensitivity 25



1. Unfold 0 into the space of infinitesimals, 0'R (Fig. 1).

2. Unfold every perfinite number by adding the infinitesimals
to the perfinite (Fig. 2).

3. Unfold o into the space of infinities, co'R, the reciprocals of
the infinitesimals (Fig. 3).

4. Unfold each element in the space of infinities by adding the
finites, R, to each element (Fig. 4).

5. Unfold each element in the space of infinites plus finites by
adding the infinitesimals to each element (Fig. 5).

The result is
R = <[R + O’IR> U <oo’[R +R+ O’IR> .
1 2 1 2 3

Entirely analogous procedures can be used to unfold Q, C, or higher
dimensional classes.

Unfolding relations and functions

We have unfolded real numbers and the equality and membership re-
lations at various sensitivity units. We have also implicitly unfolded addition
and multiplication. We now unfold relations and functions more formally. For
every folded relation or function, and every unfolding of number space, we
postulate that there exists a unique extension of the relation or function in the
unfolded number space, which we call the unfolded relation or unfolded func-
tion.

We further postulate that unfolded relations and functions follow the
transfer principle: Any statement or expression using functions and relations
in the folded space is equivalent to the corresponding statement or expression
in the unfolded space.

In other words, an unfolded function or relation inherits its behavior
from its folded original. For example, a' +' b’ =' ¢ if and only if a + b = c. The
transfer principle applies only to points at the origin of the unfolded space:
if a’, for example, is the origin of the unfolded space around a. The transfer
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principle does not apply to other points in the unfolded space, even though
the unfolded function or relation exists at those points.

A function or relation may be defined in an unfolded space but not
be the unfolding of any folded function or relation; in other words, it is not
defined solely at the folded level. In this case, we call it a proper unfolded func-
tion or relation; otherwise it is canonical unfolded. We postulate that a canon-
ical unfolding is unique: a folded function or relation has only one canonical
unfolding within unfolded numbers.

A proper unfolded function or relation can be folded, but some infor-
mation will be lost:

fxX)~={f(x+0)]0 € 0~},
that is, take all the values in the unfolding f (x+R0’)" and put them into a single
class that is assigned to the folded f(x). If f is single valued at the unfolded

level, and there is any 0" such that f(x) # f(x+0'), then f will be multivalued
at the folded level.

A canonical unfolded function or relation does not lose any information
when folded. Unfolded polynomial functions are canonical unfolded, but the
Dirac delta function (p. 79) is a proper unfolded function.

If f is a proper unfolded function that
If f is a single valued canonical un-  is single valued at the unfolded level,

folded function, then for every x: then for every x:
e f(x)'is single valued. e f(x)'is single valued.
e f(x) is single valued. e f(x) is usually multivalued.
o If x ="y, then o If x =' y, then
)= ). fx) = fy)-
o If x = y but x # y, then o If x = ybut x # y, then
f(x)=f(y) f(x)=f(y)
and usually and usually
fx)# f(y) fx) # f(y)

“Usually” here is used in the sense that if x # y, then usually f(x) #
f(y)-
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The n-th unfolding of a relation distributes that unfolding to its argu-
ments, i.e. the arguments are all taken at the n-th unfolding. The default un-
folding number of a relation is 0, i.e. if no unfolding is indicated, its arguments
are presumed to be folded. We have seen how this works with equality, which
by default is folded, and which in turn assumes its two arguments are folded.

The n-th unfolding of a function is the maximum unfolding used by its
arguments and results. Exactly how this works depends on the function. With
addition and subtraction, all the arguments must be at the same unfolding, so
the unfolding of the function is the maximum unfolding of the arguments. For
multiplication and division, the arguments and result can be at a variety of
unfolding levels: the unfolding number 7 of the function is the maximum of
the unfolding numbers of the two arguments and the result.

If a number’s unfolding needs to be increased to be compatible with
other function or relation arguments, it can be unfolded to that level and re-
main equivalent. The unfolded number is at the origin of the unfolded space.

If the unfolding needs to be decreased, it can be folded into the unique
element it belongs to at the lower unfolding, but equivalence can only be guar-
anteed if the unfolded number is at the origin of the unfolded space.

We now examine some examples of these principles.

EXAMPLE 1. 2 +0 = 2. Everything in these expressions is in folded
arithmetic.

EXAMPLE 2. 2+ 0" = 2+ 0 = 2. The addition in the first expression is
unfolded, and the addition in the middle expression is folded.

EXAMPLE 3. 2+ 0 > 2. The unfolded order relations are defined in
much the same way as the equality relation.

EXAMPLE 4. 0' € 0, and 02 =’ 0- 0, but 0% €~p2 0-0". The unit in the
superunfolded infinitesimals is 0.

EXAMPLE 5. o0 +1 = oo. The arithmetic of oo, like other numbers,
defaults to folded.

EXAMPLE 6. g = ¢b. Again, the default arithmetic is folded.
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/

EXAMPLE 7. o= 1. The arguments and value of division can be at any
levels of unfolding. In this case, the maximum unfolding is the first unfolding,
and the division is the inverse of 1-0' =' 0.

EXAMPLE 8. For finite x, x — x = 0. For folded perfinite p and unfolded
infinite x such that x =" poo’, x — x = 0. For folded infinite x = o0, x — x = @b.
The operations that work in folded arithmetic work identically in unfolded
arithmetics, provided every item is unfolded. Therefore, expressions such as
these can be evaluated in unfolded arithmetic whether x is folded or unfolded.

EXAMPLE 9. Similarly, for perfinite x, ; = 1, and for folded perfinite p
pl0, o'} _ (0,00}
pl0, 00} {0, 00}

and unfolded afinite x such that x =" p - {0, o'}, =1,

RIR
Il

but for folded afinite x :=p - {0, 0}, ; = 6.

EXAMPLE 10. In unfolded arithmetic, if we use x =’ 0 instead of x =' (0,
R-0
X
then — = = ob.
en o : el

EXAMPLE 11. For finite folded 7,
0r+0% 07 s 02
0/ OI OI
=r+0

=T

Nonintegral superunfoldings

A superunfolding (p. 24) normally uses a sensitivity unit of 07, where
p is an integer. The microscope of such a superunfolded space magnifies un-
folded space by a factor of co'”, where oo’ := 5.

Any positive perfinite p, including noninteger p, results in a magnifi-
cation by an infinite amount, since oo'” is infinite. For any positive perfinite
q < p, the unfolding with 0% is a superunfolding of the unfolding with 0'g,
since p — g is also positive perfinite and oo'”™ is infinite. Thus there is a con-
tinuum of superunfoldings corresponding to the real continuum, each with its
own sensitivity level.
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A positive infinitesimal p, such as p := (, results in a finite magnifica-
tion, since oo’” is finite. In this case, we do not obtain an unfolding or a separate
sensitivity level.
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DEFINITIONS OF
DERIVATIVE AND INTEGRAL

Definition of derivative

The equipoint derivative directly calculates the rate of change at a point
using sensitivity levels and the transfer principle.

f(x+0)

F&) & f()

Fi1G. 7:
Calculation of derivative
as slope within a point

Figure 7 shows a curve y = f(x) and a microscope view of the point
(x, f(x)). Within the point, the curve is infinitely magnified and becomes a
straight line. The Ax of this line is an infinitesimal (', the sensitivity level of
the microscope, and the Ay of this line is f(x + 0') — f(x). In unfolded space,
we denote Ax and Ay as dx and dy. The slope of the line, and the derivative

of f(x) atx,is
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Af(x) _ flr+0) = f(x)

fl) = =4 W]

As an example of this calculation:

f(x) =2
df(x)  (x+0)>-x?

dx ~ ]
X2 +2-0x+0%-x2
= 0
_2-0x
=7
=2x

) 2_x2 02
Since o =0 and 0 = T = (', these terms vanish from the final

result.

For a comparison of this definition of the derivative with that in other
systems of analysis, see the Appendix (p. 139).
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Definition of definite integral

The equipoint integral directly calculates an area as an infinite sum of
zero width rectang]les.

FIG. 8:
Calculation of integral
as sum of zero width rectangles

Figure 8 shows a curve y = f(x) and a microscope view of the sliver
at x an infinitely thin area under the curve f() at the point x. The microscope
expands the sliver in the x direction but not in the y direction. Within the
sliver, the curve becomes a flat line, and sliver is a rectangle with height f(x)
and widthx +0' - x =0".

The total area under the curve from x = a to x = b is the sum of the

b 6, a, and the width

of each sliver is 0’ = 22, The total area from a to b, and the definite integral of
f(x) fromatob,is

areas of these slivers, the number of these slivers is oo’ :=
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[ i or 52 e

As an example of this calculation:

fodx ZZk—ui,
0 & o

2u? i X
P

0'?
2u?> o0 +1

= _,200 >

Eu2<1+il>
o

=u*(1+0)

= uz.

8

For a comparison of this definition of the definite integral with that in
other systems of analysis, see the Appendix (p. 139).

Infinite bounds on integrals and path integral

In the equipoint definition of integral, b — a may be infinite if either of
the limits a or b is infinite. In this case, we simply choose a 0’ of a high enough

1

b-a
sensitivity that is infinitesimal, e.g. b-ar

Equipoint analysis can be used with any infinite element extension dis-
cussed in [CN]. With a projectively extended system, bounds of integration
may appear ambigous, since +oo and —oo are identical. In this case, it is helpful
to remember that bounds of integration implicitly establish a path of integra-
tion: integrating from —co to +oo integrates through 0 and all the finite values,
integrating from 0 to +oo integrates through all the positive finite values, etc.
The equipoint integral along a path x = P(t), where t runs from a to b, is given

by

dP(t)

fpf(x)dx= F(P(t)) dP(t) = f () 22

t=a
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Differentiability and integrability

The Singularities (p. 68) chapter discusses several types of singularity
(p. 72) which may present difficulties using the above definitions of derivative
and integral.

Briefly, at a jump discontinuity, the derivative is infinite, and the inte-
gral can be calculated straighforwardly through the singularity. See the discus-
sions of the absolute value function (p. 73), the Kronecker delta function (p.
78), and the Dirac delta function (p. 79).

At punctured functions, poles, and essential singularity singularities,
it is necessary to use an offset derivative (p. 68), and attempts to integrate
through these singularities may be incorrect. See the discussions of the punc-
tured constant function (p. 75), the axial function (p. 87), poles (p. 85), and the
function sin L. (p. 89)
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THE FUNDAMENTAL
THEOREMS OF CALCULUS

For the following equipoint proofs of the first and second fundamental
theorems of calculus, we assume the following:

b c b
1. The splitting property f f(x)dx = j f(x)dx +'[ f(x) dx for

all ¢, which is easily proved from the definition of the definite
integral.

2. A corollary, the zero property f f(x)dx =0 forall a.

b a
3. Another corollary, the reversal propertyf f(x)dx = —f f(x)dx.
a b

4. The function f is continuous (p. 52): f(x +0') = f(x) for the
endpoints x = a and x = b in the first theorem, and for all x
in the second theorem. Cases where this condition does not
hold are discussed at the end of this seciton.

We do not assume the mean value theorem.
We recall that the definite integral is defined as
b !/
< kb-a)\ b-a
[ e e

and the derivative as

df(x) _ f(x+0) - f(x)
dx 0 '

THE FIRST FUNDAMENTAL THEOREM OF CALCULUS:

fb%(;"dx - F(b) - f(a).

a
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dx = . b dx
_ bo;la boj,a sz <a+ k(l; a) bo;la> _f <a+ k(bo; a)>
ng<a+(k+1)bo;,a>—f<a+kb0;a>

Ef<a+(oo'+1)bo;a> —f<a+ b;f‘)

fla+(b-a)+0)-f(a+0)
- () - f(@).0

THE SECOND FUNDAMENTAL THEOREM OF CALCULUS:

%ff(u) du = £ (x).

PROOE.
x+0' x
e [ rodu- [ rooau
] R
x x+0' x
j f(u)du+J‘ f(u)du—j f(u)du
= O’
x+0
j f(u)du
=T 0
_ fx+0)0
= Al
= f(x+0)
= f(x). O
We then have

fxf(u)du:F(x)+k,
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where F(x) is any function such that

dF(x)
dx - f(X),

and k is a constant that depends on c. Then we have

ij(x)dx:j:f(x)dx+jjf(x)dx

b a
=f f(x)dx—f f(x)dx
= F(b) - F(a).

Numeristics and equipoint analysis allow us to apply these definitions
and theorems to a wide range of functions. A function that is conventionally
considered discontinuous (p. 52) may have an infinite equipoint derivative at
the point of discontinuity. A similarly wide net is cast for integration. Abscis-
sas and ordinates may be finite or infinite, single valued or multivalued.

There are few types of singularity where these theorems do not apply
completely, since the type of derivative used here at such points is not determi-
nate. In these cases, it may be necessary to use an offset derivative (p. 68) and
restrict the range of integration. Singularities where this occurs include poles
(p. 85) and essential singularities (p. 89). This consideration is discussed in
detail in the Singularities (p. 68) chapter.
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DERIVATIVE THEOREMS

Chain rule

THE CHAIN RULE:

2 flg)) = [%] ETE)

It might appear that d g(x) can simply be cancelled, but since the dif-
ferentials on the left and right sides have slightly different interpretations, we
must proceed more carefully.

PROOF. Define
y = g(x)
0":=g(x+0") - g(x)

Then

df (g(x)) _ f(g(x+0)) - f(g(x))
dx 1]
_fy+0)-f(y)
= 5
_fy+0)-fy) o
- o o
_fw+0)-f(y) gx+0)-gk)
- 0" o
dfly)  dg(x)
dy dx
_df(gx) dg(x)
~ dg(x) dx

.0
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Product rule

THE BASIC PRODUCT RULE:
2 F2() = Fo) () + g() 2 ()

PROOE.

flx+0)
fx)  -f(x)

flx) =
/ flx+0)
i l\
x+0 | g(x) =
g(x+0)
X =
x+0

F1G. 9:
Calculation of derivative of
product of f(x) and g(x)

Figure 9 shows, on the left, a square with sides of length x + 0" and,
on the right, a rectangle which is the transform of this square by f(x) in the
horizontal direction and g(x) in the vertical direction. The rectangle has sides

fx+0) = f(x) +[f(x+0) ~ f(x)]
gx+0)=g(x)+[gx+0) - g(x)].

The two strips on the sides of the left figure, with area x - (', are in-
finitesimally small compared to the large portion of the left figure, with area
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x?. These strips are transformed to the two strips on the sides of the right fig-
ure, with areas f(x) - [f(x+0') — f(x)] and g(x) - [g(x + 0') — g(x)], which are
infinitesimally small compared to the large portion of the right figure, with

area f(x) - g(x).

The small square in the upper right corner of the left figure, with area
07, is transformed to a small rectangle in the upper right corner of the right
figure, with area [f(x +0') — f(x)] - [g(x +0') — g(x)]. Both are infinitesimally
small compared to the strips on the sides:

[f(x+0) - f(®)] - [gx+0) - g(x)] =0

or
[fx+0) - f] - [gx+0) ~g()] _
0 '
Then
d Y 09 -
A ploygoy = L2 Dt 9) - JI30)

= 5 [F@st

+ f(x) [g(x+0) - g(x)]
+ [f(x+0) = f(x)] g(x)
+[f(x+0) = f(2)] [g(x+0) - g(x)]

- f(x)3()]

= 5 [F@s
+f(x) [gx+0) — g(x)]
+[f(x+0) - f(x)] g(x)
- f)3(x)]

_ [ [8(x+0) —g(x)] +8() [f(x+0) - f(x)]
= 5

= f() S g(x) + () ().

THE MULTIPRODUCT RULE:

e 1A =3 <k_1 fk(x)> (=)

j=1

k#n
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PROOF. By induction. The case n = 2 is the basic product rule proved
above. Assuming the multiproduct rule for n, then:

ﬁm =4 [(an<x>> fun x)]
= fnr1(x) <$ ka(x)> + <ﬁfk(x)> %fn+1(x)
k=1 k=1

n

- fra@ 3 [ [T <%fj<x>>+%fn+l<x>< ” fk<x>>

=1 \ k=1 k=1
k#n

Ez": <%fj(x)> ka(x + (%fm(x)) I A

k;é] k#n+1

n+1 n+l d
=3 TTA@ ) (560)
k#n
which is the rule forn + 1. O

Inverse rule

THE INVERSE RULE: If f is single valued, and y = f(x), then
af '(y) df (x)
Cdy  dx T
with equality holding if f is injective.

PROOF. If f is single valued and injective, then f~!(f(x)) = f ' (y) = x,
and by the chain rule,

df '(y) df(x) _df1(f(x) df(x) _ dx df(x)

dy dx  df(x) dx df(x) dx =1

If f is only single valued, then f'(y) may be multivalued, and
fH(f(®) 2 x,and

df ' (y) df (x)
dy dx 21.0
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A simple example of function with a multivalued inverse is f(x) := x

Fly) =yt =+\y

(xz)%::tx

a %—i(ix)_i_l

dy” — dy _%2
_xl =l
C2x 2y

Power rule

THE POWER RULE: For any complex n,
d

_xn — nxn—l

dx

PROOF. FORn =1:

d x+0 -x

dx o

1.

FOR n € Z*: By the multiproduct rule (p. 40) with fi(x) := x and this

rule forn =1,

d d n n n
—x" = — X = X 1=nx""!
dx dx 44 ;:; g
k#j
FOrRn=-1:
il: 1 _sz—x—O’ _ -0 -1
dxx  0(x+0)

FOR n € Z™: By the multiproduct rule with fi(x) := x! and m := -n,

and this rule for n = -1,

Derivative theorems
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FOR n € +:: By the inverse rule (p. 42) with g := 1 and y := = x7,
ﬂxn—ix%—ﬂ—i—i——l —1 —1%_1—nxn71
dx”  dx _dx_ﬂ_dﬂ_qu‘l_qy _q

dy dy

FOR n € Q*: By the multiproduct rule with fi(x) := x1, and this rule
forn € 1*, and given any p € Z* and g € Z* such that n =

ESN N

d d » d 1 & P 1 1 p ey

— "= — = — = 1P = _ - — n-1

P dqu x | |k 1P xa ~_21 ) x4 (qx‘7 > qx'? nx"".
ANy #

+00
FOR n € R*: n has at least one decimal representation Z a, 10%, where
k=-—o0
each ay is a decimal digit 0,1,...,9. As shown in [CR], this representation is
unique only when the decimal representation is not repeating and infinite left
decimals are not allowed. We do not require uniqueness here, only that there
be at least one such representation.

The following uses an infinite case of the multiproduct rule (p. 40). As
discussed in [CD], the numeristic theory of infinite series, including equipoint
summation, does not have the inconsistencies of the conventional theory of
infinite series, so we feel confident using such infinite methods without any
special proofs.

Therefore, by the multiproduct rule and this rule for positive and neg-
ative integer n,

d , d sw e d = .
= 2, ak10 ax10
—X = —X X
dx dx T dx H
+o0o +0oo .
= > | TT xax10* (ajx“floj‘l)
e\
= aj10]— x%
j=—o 10 k=—00
+00 ) . .
= Z a;10/ o (ZiZ e ak109) -1 n-1
j=—
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FORn € C*: Let r := Ren and s := Imn; and let by and ¢k be the digits
of respective digital representations of r and s; and aj be the complex digits:

+00
r= > bl0*
k=—o0
+00

s = Z CklOk

k=-c0

ay = bk + iCk

+00
Thenn =r +is = Z a;10F. By the multiproduct rule and the same

k=-c0
calculation as above for real n,
d d - d e p
Lt = _xr-Hs — _xzk:—oc ai10% _ nxn—1. 0O
dx dx dx

THE QUOTIENT RULE:

d flx) __ 8(x)f&f(x) - f(x)£gx)

dx g(x) g(x)?

PROOF. By the product rule, the power rule for n = -1, and the chain
rule,

d fix) 1
Eg(x) g(x) dxf( x)+ flx )dx g(x)
g(x)
g(x) dxf( ) f( ) g(x)z
g(x) dxf(x) f(x) dxg(x)

g(x)?

Derivatives of sine and cosine

dcos 0 )
10 = —sin0

dsin 0

30 = cos O
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e

\CD

\9

FI1G. 10:
Calculation of derivatives
of sine and cosine

PROOF. Figure 10 depicts the calculation of the derivatives of the sine
and cosine functions. In this figure, we have

x = cos0
y =sin6

and a microscope picture of the point (x, y).

In the microscope, the circle has become a straight line, coincident with
the tangent to the circle at (x, y). Outside the microscope, the radius is a single
line, but within the microscope, the radius is the class of all lines normal to the
tangent. We show two such radius lines that are separated by the distance df.
The units of this distance must match the units in the tangent and radius, so
we must measure d6, and thus 0 itself, in radians.

The line segment along the tangent bounded by the two radii forms a
triangle with legs dx and dy and hypotenuse d6. We then have

y_ _dx

x dy
dx .
@ ——51n9
dy
20 =cos6.
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Derivative of exponential function

oo

The last line comes from the substitution co’'x — ", or 0o’ — —.
x

1
Adding to this the substitution — — 0", we then have
(o/e)

U /!
0"x = ex)O

x 00"
)
wll

1
E(].-f-%)

E<1+%)

e

=(1+0"x).
Solving for x we have
e”* 1
x =
OII
e’ -1
1=
O/I
ex _ ex eOH _ 1
- o
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ex+0” —eX

PROOF. Start with a result from the previous section and substitute
x =Int.

x_eolx—l
=3
-1
Int =
n 0[

t t
f t'dt = Int is an instance of the general law f t"dt =
1 0

tn+1
———, not an exception.
n+1 P
t n+l1
PROOF. Integrate ¢! with f thdt = and obtain
0 n+1l
t o
t 1
tldt=— -~
f 1 0 0
|
= 0,
=Int. O

This result can be verified with L'Ho6pital’s rule, which is proved below.
For real ¢, this result is also verified by the following.

f t1dt =In|x|

1
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0 is a zeroth-order polynomial in unfolded arithmetic, or more
accurately a polynomial of order ('. Its integrals are unfolded polynomals of
higher degrees:

Jlnxdx:xlnx—x

140" _

x x
:T—x
2 3 2
J(xlnx—x)dxz %lnx—%
B 220 _ 42 342
2.0 4
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LIMITS AND CONTINUITY

Limits

Definition of limit forms

A limit can be defined with an unfolded expression which gives results
similar to those given by conventional definitions. In many cases, these expres-
sions can be evaluated where a conventional limit fails to exist. Any syntacti-
cally correct statement is meaningful, and so these expressions always have a
meaning, which may include multivalued classes or the empty class. We will
later see several examples of this.

lim f(x) := f(a+0'), where a is finite and (' # 0"
lim f(x) := f(a+0'),where a is finite and 0’ >’ 0"
x—a+
lim f(x) := f(a+ 0'), where a is finite and 0/ <’ 0”2

lim f(x) := f(c0'), where oo’ # o0’

lim f(x) := f(c0'), where oo’ <’ 00
X—+00

lim f(x) := f(o0'), where oo’ >’ o0’

Example
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Offset expressions

A limit in the form f(a + 0') or f(oo') will also be called an offset ex-
pression. It is not the result of a process but simply a value of a function at
an unfolded point. An expression in the form of f(a) or f(oo), which is at the
origin of the unfolding, will be called an original expression.

Any of the above expressions may be multivalued and/or depend on
0" or o’. In such cases, we may wish to restrict our attention to those cases in
which the expression is single valued and/or independent of 0’ or oo’

Uniform offset expressions

An offset expression f(a + (') is uniform if it has the same folded value
forall0,ie.if f(a+0") = f(a+0") for any 0',0" € 0, even when 0’ and 0" have
different signs. If f is single valued and f(a + 0') is uniform, then the class

f(a+R0') or f(a+ C0') is single valued. A derivative f;, (a) = flax 00), —f@)

is uniform if it has the same value for all 0'.
An offset expression f(a + (') is semiuniform if it is the same for every
0’ of the same sign. If f is single valued and f(a + (') is semiuniform, then the

class f(a+|R|0) or f(a + |C|0’) is single valued.

An offset expression f(a + 0') is disuniform if it is neither uniform nor
semiuniform.
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Continuity

1
| |
I I
-1 1
T N
Va 0T ‘\.‘_\
/ Y
-1 |
[
r]
+0'/
f’f
Fic. 11

Discontinuity of signum function
sgnx atx =0

Definition

A function f is continuous at x if the offset values are uniform and
equal to the original value, i.e. f(x+a0') = f(x) foreverya € R, or f(x+R0’) =

f(x).

A function f is semicontinuous at x if the offset values are semiuniform
and equal to the original value, i.e. f(x + a0') = f(x + b0’) for every a,b € R
and sgn a = sgn b. In this case, if f(x+a0') = f(x) for positive a, then f is right
continuous; for negative a, left continuous.

Figure 11 shows an example of a discontinuity in the signumfunction

-1 forx<0
sgnx:={0 forx =0
+1 forx > 0.
This function is discontinuous at x = 0 because sgn(x) = 0 while sgn(x - 0') =

~1 and sgn(x + 0') = +1 for 0" >' 0% It is semicontinuous but neither left
continuous nor right continuous.

52 Equipoint Analysis



If f is continuous at x, then f is locally linear: f(x +0') — f(x) =" f(x+
0'(k+1)) — f(x + 0k) for real k.

If f has a finite derivative at x, then it is continuous at x:

foye L2010

fx+0)="0f"(x)+ f(x)
Since f'(x) is finite, 0'f'(x) =" 0
flx+0) = f(x).

Continuity for infinite values
Continuity involving infinite values may depend on the choice of infi-
1
nite element extension. Consider the reciprocal function f(x) := —. Atx =0,
x

f(x+a0) = 0va0 - a0 In the projectively extended real numbers,

1 p—
a0’
for all real a, so f(x) is continuous at x = 0. But in the affinely extended real
numbers,

1 [+0#-0 fora>0
a0 | —o# 4+ fora<,

so f(x) is not continuous at x = 0, only semicontinuous.

It can be shown that the characteristic function of the rational numbers
[Q](x) is continuous at irrational x and discontinous at rational x. See Using
class counts in derivatives and integrals (p. 130).

Continuity of multivalued functions

One approach to the continuity of multivalued functions is to exam-
ine a single valued branch. A branch can be often be defined by intersecting
the multivalued function with a subset of the range. For example, in R, if we

take x> to mean the multivalued inverse of x%, we can define \/x to be the
nonnegative branch of x2, ie. VX o= x2 N |R|. Then /x is continuous, since

Vx+ RO = 4/x.
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Another approach to multivalued continuity is distributed continuity.
We define a multivalued function f(x) to be conjunctively continuous if (Ya €
f(x+R0')) a € f(x), and disjunctively continuous if (3a € f(x+R0')) a € f(x).
Then x? is conjunctively continuous everywhere, since (Va € (x+R0’) %) a€x:
for all x.

Subcontinuity of multivalued functions

We define a multivalued function to be f(x) subcontinuous at x if
f(x+R0'") C f(x). We say it is semisubcontinuous if f(x+a0'") C f(x) for all a of
a given sign. Assuming 0’ is positive,i.e. 0' >’ 0-0', then if f is semisubcontinu-
ous, we say that it is right subcontinous if a is positive, and left subcontinuous
if a is negative.

1
In the projectively extended real numbers, we found above that p is

continuous at x = 0, but the same does not hold for er. Atx = 0, this function
has two values:

ST,

e’ =e* ={e", e} = {o0,0}
and, assuming (' is positive,

o = | T fora>0
10 fora <0,

so e* is both left and right subcontinuous at x = 0.
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DIFFERENTIAL AND
INTEGRAL OPERATORS

Differentials and integrants

Differentials

dy

As the Leibnitz notation TIx indicates, a derivative is an arithmetic quo-
x

tient of differentials. The differential of an independent variable is an infinites-
imal, as is the differential of a dependent variable when the derivative is finite.
Infinitesimals are unfolded members of folded zero, which are exactly equal to
zero in folded aritmetic but distinct in unfolded arithmetic.

A differential is an operator on a function with respect to a member of
zero. We define

dof(x) := f(a+0) - f(a),
from which follows

"dx=a+0 -a=0.

A derivative with respect to an infinitesimal 0’ can therefore be defined
as:

Ydaf(x) _ fla+0) - f(a)

Jol@) = =g 0

If the derivative is independent of the infinitesimal, we write:

d.f(x) _ f(a+0)=f(a)

fa) = 2 ¢

This occurs when f(x) is analytic, since, for f(x) = x",

Oﬂa x) = nx" 10 + N n a" ko = 0.
flx)=n kzzz .
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d d,
The notations f'(x) and J;(;C) of course, mean the function df gcx),
daf (x) . , df (x) ¥
and “ix can be written f'(x)|, or x|
Integrants

We also define an integrant as an operator on a function:
0'pa §
[ r00:=3 rom.
k=1

An integrant is infinite whenever the corresponding integral is nonzero.

The definite integral can be defined in terms of an integrant and a dif-
ferential:

0/pb 0b 0pa g &
f F(x)dx = f Fx)0 - f F0 =Y FOR0 =Y (K0
a k=1 k=1

(substituting oo’ = ba—“)

b—a)b—a

3.

<
T8

S

Il
=~
R 4
\,.’
VRS
WA
S
811
N
N~
-
811
Q
|
'\,\
VRS
XA
8.

k=1 R
E b-a\ b-a )
= f <k o ) o (substitutingj =k~ Z‘%Z)
k:9%§+1
= b-a\ b-a
= ;f <a +j o > o

Again, if the integral is independent of the infinitesimal, we write:
b v &
f flx)dx:=> (00 =D f(0'k)0.
a k=1 k=1

We can define the indefinite integral operator in terms of the definite
integral in two ways. The first way is as a definite integral plus an arbitrary
constant:

1] 0'px 0'ax
ff(x)dx:sj f(t)dt+[RE{f f(t)dt+a|a€[R}
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or

[reae=[ swasr={[ soatralacs).

The second way to define the indefinite integral is as a class of definite
integrals with an arbitrary lower limit:

7f@»¢usjgfawus{jjfayﬁ|aek}

[ redx = f;f(t)dtz {j:fa)dt jack).

or

Either of these is a class of functions. If we denote the first A and the
second as B, then given any two F;, F, € A, we have F,(x) = F;(x) + ¢, where
c is a constant, and conversely. Similarly, given any two F;, F, € B and their
corresponding a;, ax, we have F,(x) = Fi(x) — F(a1) + F(az). Thus A 2 B, with
equality holding if all the members of A are surjective.

The integrant is the left inverse of the differential, which is essentially
the first fundamental theorem of calculus:

fo df ()= 3 F(Ok+0) — F(OK)
k=1

_ S F(0(k+ 1)) - FOK)
k=1

Ef<d<§+1>)—fmv
= f(x+0) ~ £(0)
= f(x) - £(0).

The integrant is also the right inverse of the differential, which is essen-
tially the second fundamental theorem of calculus:

af seo=[" e[ s

(s f@+ [ e

x+0'—x
/

3 @)
k=1

x+0'
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= f(x).

Partial differentials

The partial differential is defined analogously to the differential. Here
we define a partial differential on a function of two independent variables:

0. f(x,y) = flx+0,y) - f(x,v),
or, if the result is independent of 0':

O f(x,y) := f(x+0,y) - f(x,y).

The total differential is then easily seen to be the sum of partial differ-
entials:

daf (x,y) = duy f(x, y)
=f(x+0,y+0) - f(x,y)
=[fx+0,y+0) - flx,y+0)] + [f(x,y+0) - f(x,y)]
= [fx+0,y) - fx, )] + [f(x,y +0) - f(x,y)]
=0xf(x,y) +0,f(x,y)
= (0x + 0y) f(x,y)

Quotiential and prodegrant operators

Closely related to the differential is its multiplicative equivalent, the
quotiential:

0,%f(x) = —f(;c(+)0') = eI f(x)
X

The inverse of the quotiential is the prodegrant:
0 pa i
T fx) =] fOk) =€
k=1

From the quotiential and differential we derive two quotient deriva-
tives, the geometric derivative and the bilogarithmic derivative:

dx 1 dln f(x) df (x)
Vaf(x) =qf(x)& =e & =eltw,
i) )
logqx qf (x) = eihs =g & .
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We also derive two product integrals: the geometric integral or type 1
product integral, and the bilogarithmic integral:

b

b fl)™
f)™ ==

a f(x)dx

_ efslnf(x) dx
b

b qxf(x)
qxf(x) = —

a qxf(x)

— ejf;f(xmlnx

Somewhat ambiguously, the symbol [ is sometimes used elsewhere
instead of T

Volterra, who first investigated product integrals [V87], originally de-
fined what is now called the type 2 product integral:

b . )
[ 101+ fx) dx] = e/ = T o) dx

a a

The inverse of the type 2 product integral is the logarithmic derivative:

fx) _dinf(x) _ df(x)
f(x) dx = xdx’

The partial quotiential is given by:

o &0y % In f(x,y)
o f(x,y) = —f(x,y) =e .
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Higher order derivatives and integrals

The simple form of the equipoint derivative lends itself to direct calcu-
laton of higher order derivatives. These derivatives are are also simple quo-
tients, with dx" := (dx)" in the denominator.

HIGHER ORDER DERIVATIVE FORMULA:

" (—1)7* <Z>f(x +0'k)
£ (x) == o

PROOF. Computing higher order derivatives is mainly a matter of com-
puting the numerator d” f (x), which is an iterated application of the differen-
tial operator:

2
F0) = 2 )

_dld[f(x)]]

- 072

_df(x+0) - f(x)]

- 072

_ e +2-00) - flx+0)] - [f(x +0) — f(%)]
012

Cfx+2-0)-2f(x+0) + f(x)

- 072 :

The expansion of these operators is similar to expansion of the binomial
power

(a-by" = 3 (-1)k (Z) a" kb

k=0

o n
— (_1)nk< >akbnk.
k
k=0

In derivatives, f(x + 0'k) corresponds to a*b"*: the n-th derivative is
d}’l
() =
@) = —— f(x)
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n

(~1) <Z>f (x + [n-k]0)

OI?’l

(1) (Z)f(x +0k)
o '

k=0

n

k=

(=)

which can be proved by induction:

fO) = £ = (8) (1) f(x-0),

and

dn+1 d
dxn+l f(x) = dx

1

= 0/n+1

1

= 0/n+1

1
0/n+1

x dx"

1
o
= % [zn:(—l)k <Z)f (x+[n+1-k]0)
k=0

ar ar ar

£ = 5 | =00 = 4 F)

- zn:(—l)k (Z)f (x + [n—k]0) ]
k=0

[(Z)f (x+ [n+1]0)
[
o

[("gl)fm [n+1]0)

+ Zn:(—l)k<n21>f (x+[n+1-k]0)
k=1

(e

n+1

Z(—l)k<nz 1>f (x+[n+1-k]0).0O
k=0
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A simple example of this theorem:
A?(x®)  (x+2-0)2-2(x+0) +x°
dx2 0/2
X¥+6-0x2+12-0%x+0°%-2x3-6-0x2-6-0%x-0% +x°
072

6x

HIGHER ORDER INTEGRAL FORMULA:

[ [reas = s = 5 (7)) -y
k=n

PROOF. Since the binomial theorem extends to negative exponents, we
can extend the previous theorem to integrals. In this case, the upper limit on
the summation is infinite:

o S (e

(~1)2 <" + ]’z - 1) a-"kpk
(n + Ilj - 1>a‘"‘kbk.

(a _ b)—l — a—l—kbk
0

~
8‘ (=)

8. W[\”/]

>~
o

For n = 1, this becomes

8

P
I

and
d—l
-1

fO =

f(x)

INR

flx—(k+1)0) 0

8. T[Ms.

=S f(x-0k)0.
=1

=
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Taking 0" = £, the above summation matches the definition of the
definite integral:

FO0 =3 =000 = [ fwa
k=1 a

Since oo’ is independent of (/, a is arbitrary, and this expression is actu-
ally a class of functions of x, each expressed as a definite integral with a fixed
lower limit and a variable upper limit. This matches the second definition of

the indefinite integral [ f(x) dx given in Differentials and integrants (p. 55)
above.

Higher order integrals are obtained through other negative powers of
binomials:

fx)dx" = f(x) =
I

n

!

8

(1)"( )f(x (k +mn)0’) 0"

<k+Z_1>f(x (k +n)0') 0"

- (k-1 ) .
e

T
- o

8

>
- o

>~

L'Hopital’s rule

L’"HOPITAL’S RULE FOR 0/0: If functions f and g are continu-

o) o then £O) _ F(6)
ous at c and f(c) = g(c) =0, the 20 ~ 20

The equipoint version of L'Hopital’s rule evaluates the function —jgf Ex;
at ¢ in unfolded arithmetic, since f(c) = g(c) = 0 in folded arithmetic is insuf-
(c)

8(0)

ficient to compute as a single value.
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PROOF. Since f is continuous at ¢, we have f(c+d) = f(c+0') = f(c) =
0= f(d) - f(c), and similarly for g. Then

fl©)  fle+0)

glc) ~ glc+0)
 fle+0) - f(c)
g+ 0)-g(e)

fc+0")=f(c)

— —0,

T g(c+0)-g(c)
0/

_f©
=50

If both f'(c) and g'(c) are zero, then we can iterate the rule until we
find some n for which either f™(c) or ¢™(c) or both are nonzero. If both

derivatives are zero for all n, then the rule does not give a single value for the
quotient. [J

L’'HOPITAL’S RULE FOR oo/o0: If functions f and g are con-
tinuous at ¢, f(c) = g(c) = oo, and f and g are finite in some

punctured neighborhood around c, then fle) = f ,(C) .
gle)  g'(e)
PROOF. Let ¢’ := ¢+ (0. Since f and g are continuous and infinite at

an isolated point ¢, the unfolded f and g must take on every unfolded infinite
value within the unfolded space around c.

Let oo’ := § and let c+0" be an arbitrary point within the unfolded space
around c. Within this space, the magnitudes of f and g strictly decrease mono-
tonically as the magnitude of 0" increases. It is therefore possible to choose 0"
so that both

log_, |f(c'+0")| <log_, |g(c)]
log_, |g(c' +0")| <log_, |g(c)]

This means that f(c’+0") and g(c’) are distinguishable from finite mul-
tiples of themselves at different sensitivity levels, and similarly for g(c’ + 0")
and g(c’). Since the magnitudes of f(c’' +0") and g(c¢’ + 0") are less than that of
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g(c'), we have

f(cl + Ou) _

=0
g(c)
g(c +,0 ) _0
g(c')
We then compute
f(©)

fle) _f(e) _ 5@

gle) gl@) 1
f(C’) f(C/+0”)

G
- _ g(c'+0")
1 8(c)

_ f(d+0") = f(c)
- g(cl + O") _ g(cl)
_fi@) _ flo

=90 g0

This proof only requires that g(c) be infinite. If f(c) is finite, then the
rule still applies but is not needed, since (jg% = 0 by ordinary extended arith-

metic.

Since numeristic division and logarithms are unrestricted, it is easy to
extend the rule to other indeterminate forms.

o If f(c)g(c) is of the form 0 - oo, then use the rule on f(1X) or
g
1
fx)
g(x)
o If f(c) — g(c) is of the form oo — oo, then use the rule on
g - €9
es8(©)

o If f(c)8© is of the form 0°, 1%, or oo’, then use the rule on

In £ ()8 = g(c) In f(c).
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Power series

In the following, we define o as an integration operator with a fixed
lower bound and a variable upper bound:

0uf(t):= [ sy

and

t
of(t):=o0f(t) = f f(t)dt
0
Powers of o denote repeated integration or differentiation:
t fu u
o"f )= [ [ ] fdu
0Jo 0

o) = S

o’ f(t) = f(t).

u=t

We are now ready to derive a compact formula for power series of an
analytic function.

POWER SERIES: For an analytic function f,

f(t) = et £ (a).
PROOF. We start by integrating and differentiating f repeatedly.

0.0 f(t) = f(t) - f(a)

0.0 2 f(t) =07 f(t) — 07 f(a)

o0 f(t) = f(t) - f(a) - (t—a)o™" f(a)
o202 f(t) =07 f(t) — 07" f(a) - (t — a)o > f(a)

0,07 f(t) = f(t) - f(a) — (t—a)o™" f(a) - %(t ~a)’07f(a)
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oo (1) = () - f(@) - (t- @)0™ f(a) = 5(t - V' f(@) ..

- (t- )07 f(a)

We then take the infinite case of this series and regard it as an operator
¢ on f. We do similar operations on this series and find that it leaves the series
unchanged.

wf(B) = oo™ £ (1)
= F(O)~ fl@) ~ (t~ )0 f(a) ~ 5(t~ @0 f(a) ~..
pof(t) = of () ~0f @) - (t - @)of(a) - 5(t - a0~ f(a) ..
G f (1) = (1)~ f(@) - (t - a)o™ fa) - 3 (t - a0 (a) ..
= ¢ f(b).

For all infinitely differentiable f and all a, we now have ¢f(t) =
oapof(t), or gpof(t) = oupf(t). Since o,0f(t) = oo.f(t), by the definition

of ¢ we have gof(t) = opf(t) = cupf(t) = opf(t) — opf(a). Subtracting,
opf(a) =0forall a,ie. oyf is the zero function. Hence ¢ f (t) must also be the
zero function for all f, i.e. ¢ is the zero operator. So

£ = £(@) = (¢~ o™ f(@) - 3t~ @0 f(a) - ..
_&G-ar
-3

=™ f(a). O
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SINGULARITIES

Offset derivatives

In Differentials and integrants (p. 55), we defined the differential of a
function f at a finite point x with respect to a zero (', denoted Oﬂf (x), is the
difference f(x +0') — f(x). The equipoint handling of singularities sometimes

requires a variant of this differential.

If f is continuous at x, the differential is zero: By continuity, f(x +0') =
f(x),50%f (x) := f(x+0') - f(x) = 0. Since dx is the differential of the identity

function f(x) = x, it too is always zero.

If f(x) is infinite or discontinuous, df (x) may be nonzero. Previous
chapters have assumed that differentials of dependent variables are zero, but
most results continue to hold if they are nonzero. Exceptions include the two
fundamental theorems of calculus (p. 36), which do not hold at poles (p. 85),

as described below.
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f&x)
f(x”)

f) ERIC)Y/ e

F1G. 12:
Calculation of derivative
with offset differentials

Occasionally the differential Odf (x) := f(x +0') — f(x), or derivatives
that use it, do not yield a determinate result. In such cases, we may use the fact
that the slope of an analytic curve at a finite point x can be computed with any
two points within the microscope. This is shown in Figure 12, where we use
the two points

(x, f(x)) = (x+ 0, f(x+0))
(x", f(x")) == (x+0", f(x+0"))

The differentials along the two axes in the microscope are called offset
differentials, and the derivative using them is called an offset derivative, with
the following notations:

gjdf(x) =f(x+0) - f(x+0")
0df (x) _ fx+0) - fx+0)

0 ¢ —
O”f (.X') = 8:dx o -0

The quantity 0’ is called the upper displacement and 0" the lower dis-
placement. The first type of differential, with only an upper displacement, is
called a original differential, since the lower displacement is the origin of the
microscope. As shown in Figure 12, for a finite analytic function, the curve
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becomes a straight line in the microscope, so a original derivative and an offset
derivative yield the same result.

Letting 0" := 0’ — 0", we have

04f (x) _fx+0) = f(x+0") _ f(x+0"+0") - f(x+0")

= = 0" 1 0”
gjdx o-0" o f (

This form of an offset derivative shows that it can be considered as
the derivative of an offset (p. 50). As with original derivatives, if an offset
derivative in this form is independent of its upper displacement, we omit it
and write f'(x +0").

The above definitions apply only to finite x. For infinte x, we use the
fact that for x =0, 8,df (x) := f(0') = f(0"). For infinite x, then, we define

|
8.

pdf (x) := (%) -f (01> = f(e0) = f(e0")

=/ (g+or)-f () ="+ - floo
odf ) _ f(g) —f (&) _ floe)) = f(o0")

0 g1 -0 = =
O’Lf (x) = gidx %_ & o0 — oo
— f ((% ow) f (0") = f(o0" + OZ:”)’ — f(o0") _ mf <0N> _ Omf'(oo")

OIH

=f <O”> = f'(c0") if independent of 0"

Offset derivatives are not always inverse with integrals and should
only be used when original derivatives do not yield a determinate result. This
is clarified further in following sections, especially Poles (p. 85).
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Definition of singularity

A class x is integrous if there is a bijection between the elements of x
and some subset of the integers. Examples are 5, +1 and 2orN. This concept is
further discussed in Class count comparisons (p. 125).

A class x is determinate if it is nonempty and integrous.

A class is semideterminate if it is not empty, not determinate, and not
full. An example is the interval [-1, +1].

A class is indeterminate if it is full.
A function f is regular or analytic on a region A if:

e f(x) and its original derivatives f(x) are determinate and
continuous for every x € A;

e f(x) is equal to some value of the power series e 7" f(a)
for every x,a € A.

The numeristic theory of infinite series shows how most infinite series,
even convergent ones, are multivalued. See [CD].

An ordinary point of a function f is any point x in a region where where
f is regular. A singularity of f is any other point, i.e. where any of the above
conditions fails.

A function f is semiregular on a region A if:

e f(x) and f™(x) are determinate and continuous for every
nonsingular x in A;

e The offset f(x + 0') and offset derivatives f(x + (') are
semideterminate and semiuniform for every singular x in A;

e f(x) is equal to some value of the power series e* 97" f(a)
for every x,a € A, where the power series is calculated with
original values and derivatives for nonsingular a and offset
values and derivatives for singular a.
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A semiordinary point of a function f is any point x in a region where f
is semiregular. An irregularity of f is any other point.

Types of singularity

A singularity is isolated if there is a punctured perfinite-size neighbor-
hood that contains no singularies. This means that the unfolding of the singu-
larity contains only one singularity. In this chapter we discuss the following
four types of isolated singularity:

® Remowvable discontinuity: f has a removable discontinuity at
p if the offset values f(p + (') is uniform, but the function is
discontinuous, i.e. f(p+0') # f(p). Examples discussed below
are the punctured constant function (p. 75), the Kronecker
delta function (p. 78), and the Dirac delta function (p. 79).

o Jump discontinuity: f has a jump discontinuity at p if the
offset value f (p +0') is semiuniform but not uniform, and the
function is discontinuous. Examples discussed below are the
absolute value function (p. 73) and its derivative, the step
function.

: : _ &)

e Pole: f hasapoleatpif f(x) = nx)’ g and h are regular, h
has a root (zero) at p, and the multiplicity of the root p of h is
finite. An example is the reciprocal function, discussed below
in Poles (p. 85).

e Essential singularity: f has an essential singularity at p if it
has a singularity that is not any of the above three types. An
example is the function sin 31?/ discussed below in Function
sin 1 (p. 89).

There are many types of nonisolated singularities. Some examples are
given in Other singularities (p. 94), but they are not analyzed in detail.

This chapter also gives an example of a function which is singular ev-
erywhere in conventional analysis but is regular in equipoint analysis. See
Weierstrass function (p. 91).
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Absolute value function

1+ 14—
-1 1
: | — :
1Y 1
-1+ _— 1
FIG. 13: Absolute FIG. 14: Derivative of
value function a(x) := |x| absolute value function a(x) := |x|,

a'(x) =sgn, x

The absolute value function a(x) := |x| is shown in Figure 13. Its deriva-
tive is the step function shown in Figure 14. The derivative has a jump discon-
tinuity (p. 72) at 0.

In the region x > 0, we have a(x) = x, a'(x) = 1, and the power series
about any p in this region is expo’ a(p) = p+ (x —p) = x. The function is
therefore regular in this region. Similarly, it is regular in the region x < 0.

For any region that includes x = 0, the derivative is not uniform, since
it has two values at 0:

aa,(O)EME%=1
a ,(0) = L&“@)E _O—(;, =-1
a'(0) = £1.

a(x) is therefore not regular for any region which includes x = 0. How-
ever, a'(x) is semiuniform, and a(x) is therefore semiregular everywhere.

The derivative of a similar step function is discussed below in Dirac
delta function (p. 79). As discussed in that section, a step function can be made
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analytic at the unfolded level. In the same way, the absolute value function, as
the integral of a step function, can also be made unfolded analytic.

As a complex function, the derivative of a is the unit circle: for any
0 €0,
a(0’) —a(0) _ |0

. (0) = fall g
aO() o o

sgn0'
dcy = el[R.

Multivalued complex derivatives are discussed further in Complex
derivative (p. 96).

14 1 -
-1 1 -1 1
5 1 —_—-1
FIG. 15: FIG. 16:
Conventional signum Alternate signum
function f(x) = sgn, x function f(x) = sgn, x

The derivative a' is an alternate form of the signum function. The stan-
dard form, shown in Figure 15, is

-1 forx<0
sgnlxzz{o forx =0
+1 forx>0.
In [CN] we developed an alternate form, shown in Figure 16:

sgn. x‘:m
24T

From the above derivative we can define
S x__f,(x)_ |x:|:0,|
sgn, 0 = +1.
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This third form allows us to calculate signum for infinite numbers:
Projectively extended real numbers (R) : sgn, oo = +1
Affinely extended real numbers (R) : sgn, (+o0) = +1
sgn,(—oo) = -1
Single projectively extended complex numbers (C) : sgn, oo = e~
Double projectively extended complex numbers (C) :  sgn, (ooe™) = e’

Affinely extended complex numbers (C): sgn, (coe™) = e”

Punctured constant function

-1 1 -1 1
F1G. 17: Punctured F1G. 18: Derivative of
constant function p(x) punctured constant function p'(x)

A function with a missing point, a point where the function has no
value, is shown in Figure 17. This is a punctured constant function:

] 1 forx#0
P(x)'_{(?) for x = 0.

The function p has a removable discontinuity (p. 72) at 0, since p(0') =
p(0”) =1 for all unfolded elements 0’ and 0", but 1 = p(0') # p(0) = 0.

The derivative p', shown in Figure 18, also has a missing point:

pO)-p©) _1-9 _

0 0 0.

p'(0) =
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The offset derivative, as defined in Offset derivatives (p. 68), yields a
value everywhere:
p(0) —p(0") _ 1-1

op'(0) = 0 =00~ 0.

p(x) is irregular for any any region that includes the singularity at x =
0. Since p(0) is empty, it is not determinate, and p(x) cannot be regular or
semiregular.

Singularities at infinity

FIG. 19: Identity function I (x) := x
with microscope view of finite plane
within origin of unfolded infinite plane

Even a very simple function such as I(x) := x has a singularity at infi-
nite values. This function is shown in Figure 19, which shows the finite plane
in a microscope and the unfolded infinite plane in the macroscope. For clarity,

1
we use the affinely extended real numbers, and set oo’ :=

o The origin of the
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unfolded infinite line is

1
0o - (£00'). This is a pair of points infinitely
removed from the origin of the macroscope.

The original derivative at x = +oo therefore uses o - o’ as a lower
displacement, but this yields an indeterminate result:

E(oo+oo’)—ooE (00 —o0) + o0’

“T = ¢.
(x) = =%
An offset derivative yields
Sl (x) = = 2 —1,
" — oo

Since the original derivative is indeterminate but the offset derivative
is determinate, I(x) is only semiregular in any region that includes an infinite
value.

For another example, we take the exponential function exp(x) := e*. At
X = —oo, an original derivative is sufficient:

—o0+00’ -0 - -0
) e —-e e*-e 0-0
“exp'(x) = = =’ = 0.

wl

Therefore, in the affinely extended real numbers, exp(x) has a singular-
ity at +oo but not at —oo, and is regular in any region that includes —oo but only
semiregular in a region that includes +oo.

Every singularity at an infinite value is nonisolated, since co +7 = oo for

all perfinite r, and any punctured perfinite size neighborhood of the infinite
value is still within the same infinite value.
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Kronecker delta function

I | | 0 | | I I
-30 -20 -o o 20 30 -1
FIG. 20: Normal distribution FIG. 21: Kronecker delta
function ¢(x) with function 6 . as proper unfolded
standard deviation ¢ normal distribution

The Kronecker delta function has a very simple definition:

5. o= 1 fora=b
=10 fora#hb.

The function 6,y has a removable discontinuity (p. 72) at 0, since
f(0") =0 for all unfolded elements (', but f(0) = 1. Put another way, lim,_ 6,
exists and is 0. In equipoint terms, lim,_,, means f(x + ('), and to say it exists
means that f(x + (') is single valued and independent of (. See Limits (p. 50)
above.

The Kronecker delta function is not regular function in any region that
includes the singularity at x = 0, since the original and offset derivatives there
do not agree: the original derivative is infinite while the offset derivatives are
zero. The function is not semiregular in these regions, since the power series
using offset derivatives at the singularity do not equal the function. Hence the
function is irregular in these regions.

The Kronecker delta function, and any function with this type of dis-

continuity, can be made regular at the unfolded level, by constructing a proper
unfolded regular function which folds into this function. Figure 21 shows one
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way of doing this, by constructing a normal distribution with an infinitesimal
standard deviation.

Figure 20 shows the standard normal distribution ¢(x) with standard
deviation o:
1 2

e 202
ovV2r

(,ba(x) =

x2n

1 o
B o\ 27T % n2ng2n

1 ( xoxt «f >
= l-—+—-—+...}).
o2 202 8o* 480°
We can then define the Kronecker delta in terms of ¢(x), as graphed in
Figure 21:
6x0: =0V ¢ o (x)
e
2
=e 02

5
= 102n
“~ nl0

2 4 6

x x x
— +....
6

_m+2,0/4_ .0

Dirac delta function

Definitions of the Dirac delta function

The Dirac delta function or unit impulse function 6(-) has many defi-
nitions. Two qualities of 6 which should follow from any definition are:

65(R)Y=0 (R*:=R\D0)

fj: 6(x)dx =1.

In equipoint terms, we should refine these conditions as follows:
6([R*) _/ 0/2
"
f 6(x)dx =1.
,\/I

!
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These two conditions imply an infinite value for 6(0). In conventional
analysis, this does not allow 6 to be a function. 6 is instead defined as a dis-
tribution or generalized function. Here we consider the Dirac delta to be a
function with an infinite value at 0, a removable discontinuity (p. 72).

Here we give three definitions of the Dirac delta.

1. 64y (x) is the class of proper unfolded functions (p. 26) such

that
max O (x) =" oo’
1
600, lR* :l -
®) = —
+o0’ +\/g
J‘ O (X) dx = j O (x)dx =1
—oo! _\/g
2. by (x) := f e*™ d LY This integral yields the class of

unfolded functions in definition 1.

3.6 ! (x) is the derivative of the Heaviside step function, also
called the unit step function. This also has several definitions,
but for the moment, we will use the left-continuous form:

0 forx<0
H(x) := =
(%) {1 for x > 0.

The derivative is
) OdH (x)
6& (.X') = HO’ (.X') = O,dx .

From any of the definitions, it easily follows that, for any finite function
f(),
[ rwsw -0

In particular,

f 06(x) dx = 0.
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Definition 3

We now examine definition 3 in more detail. In the derivative expres-
sion, "dH (x) = 1 for any 0' >’ 02, i.e. for any 0’ on the right side of unfolded 0.
When it is divided by %dx = (/, the result is infinite.

1
I I I
1 0 1 -1
FIG. 22: F1G. 23:
Heaviside step function H(x) Dirac delta function 6(x)

Figure 23 shows the infinite value at 6(0). The microscope in this figure
expands infinitely in the x direction and contracts infinitely in the y direction.
The rectangle in the microscope is infinitely tall and infinitely narrow, and its
total area is 1.

At the unfolded level, 6(x) is a class of single valued functions, but at
the folded level, it becomes multivalued and loses other properties:
6(R*)=0
5(0) =R or R

In the unfolded form, the properties of 6y(x) are independent of 0'. We
can regard 6 as a class of proper unfolded functions, and we can drop the
subscripts and write
dH(x)

dx

6(x):=H'(x) =

Figures 22 and 23 show the left-continuous form of H(x) and the cor-
responding 6(x). There are several alternatives, a few of which are these:
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1. In the right-continuous form of H(x), H(0) = 1, and the rect-
angle in the microscope of 6(0) is to the left of 0 instead of
the right. The difference is only in the unfolded arithmetic;

the folded properties of 6(x) remain the same.

1+sgnx
2
scope rectangle of 6(0) is half on the left and half on the right

2. If we define H(0) = %, then H(x) = , and the micro-

of 0. Again, this makes no difference to the folded properties
of 6(x).

3. If we allow H (x) to be multivalued and set H(0) = [0, 1], the
unit interval, then the graph of H (x) is a continuous path and
can be parameterized with a single valued function. Since
H(0) is a multivalued class, then 6(0) is multivalued also,
the class {[0,1]61(0)}, where 6;(x) is the single valued 6(x)
defined above. One of the members of this class, 06;(0), is
itself multivalued, since 06,(0) = O’R(% = R. The other val-
ues, {(0,1]61(0)}, yield all the infinite multiples of 6; (0) up to
01(0) itself. Therefore the graph of 6(x) is also a continuous

path and can be parameterized with a single valued function.

4. Define 6(x) as a proper unfolded normal distribution, and

H(x) as its integral, as discussed below.

Under the first definition, the derivative of 6(x) can be computed in

superunfolded arithmetic. We must compute the derivative at the two sides of

the rectangle, first at the infinitely increasing step function at 07, and secondly

dé(x)
dx

1
at the infinitely decreasing step function at o The result, , is a second

A"6(x) Ao H(x)
dxm - dxrm1

order proper unfolded function, and ,is (n +1)-th order

proper unfolded.
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-1 -1
| |
| |
FIG. 24: Dirac delta FIG. 25: Heaviside step
function 6(x) as proper unfolded function H (x) as proper unfolded
normal distribution cumulative normal distribution

Unfolded regularity of the Dirac delta function

Like the Kronecker delta function (p. 78), the Dirac delta function is
not a regular in any region that includes the singularity at x = 0, since the
original and offset derivatives there do not agree, and it is not semiregular,
since power series using offset derivatives at the singularity do not equal the
function. Hence the function is irregular in these regions.

We made the Kronecker delta function regular at the unfolded level
by constructing it as a normal distribution with an infinitely small standard
deviation. A similar technique can be used with the Dirac delta function, as

shown in Figure 24. In this case, we want the integral under the function to
/

remain unity, so again we use 0 = ——, but without any additional scaling:

2
6(x) =0 ()
__ 1
_O'ﬁe

n

1 i x?
- 0'\/.77' “ n!02n
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1 x2 x* x®
:—<1——+———+...>.
Ovr \ 02 2.0° 6-0°

To do the same for the Heavisidestep function, we naturally choose the
integral of the normal distribution, the cumulative normal distribution:

0,00 = [ gl du

J‘x 1 _ﬁd
= e 202 du
—0 OV2

1

x2n+l

\ﬁ Z 4 2n + 1)nl2g?"

—1+ 1 <x_x3+x5_x7+>
2 oV 602  400* 33605 )"

We can then redefine the Heaviside step function in terms of ®(x), as
graphed in Figure 25:

H(x) =0+ (DL (x)

= — f 0/2 du

0

1 1 0 2n+1

=27 fz (2n + 1)n!02"

:1 1 ( x3 x0 ~ x7 . >
_2 0 3.02 1O~0’4 42.06 )7
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Poles

| | [ 1+

0 2.0 3-0

0 I I I

FIG. 26: Reciprocal function r(x) := 2

X
with microscope view of y axis infinitely expanded

in x direction and infinitely compressed in y direction

In Types of singularity (p. 72), we defined a pole of a function f as a

point p such that f(x) = %, g and h are analytic, h(x) has a root (zero) at p,

and the multiplicity of the root is finite.

Here we discuss the simplest pole, the function r(x) := 1 at the point
x = 0. Figure 26 shows a graph of r(x) and a microscope of the y-axis, which
is infinitely expanded in the x direction and infinitely compressed in the y di-
rection. In curves like the one in Figure 7, the curve becomes straight in the
microscope, but in Figure 26, the curve keeps its asymptote along the vertical
axis. This remains the case no matter how many times the curve is superun-
folded.

This leads to an indeterminacy in the derivative:

, r(0+0)-7(0) _ 5o ~ 0
T(O) = ( 0), ()EO+00’ 0

o0 — OO

o %

ol
Il

Ol

=
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The offset derivative (p. 68) however is determinate:

L 0) = (@) _ 5y
r/(x+01/) = T(O +00), T(O ) = 0 +00, 0
0" =0" =0 3 -1 . -1 ~ {Oo in[lA?

= 0/01/(0/1 +O//) = 0//(0/1 +0/) - m - —% IHE

r(x) is therefore not regular in any region that includes the pole, but it
is semiregular, since the offset derivatives are determinate and semiuniform,
and the power series using them yields the function. For perfinite a and a zero
0’ we have:

— 2 © k
fx) =e® f(a) = % B xaz (x A Z - Da(zfil 2
2 o0 k
fx) = e £(0) = % B xo/z 2 03 - Z =) o(,,il %

k=0

An indeterminacy problem also occurs in the integral. A curve like the
one in Figure 8 becomes flat in the microscope, but r(x) keeps its asymptote
in all unfoldings. If we integrate r(x) from 0’ to a positive point p, we obtain
the infinite result Inp —In 0’ = +c0 without a problem, but if we try to integrate
through the pole, we run into an indeterminacy. An attempt to integrate from
—p to +p, for example, would lead to the following:

J‘W r(x)dx = J‘O, r(x)dx + J‘O.OI r(x)dx + J”O, r(x)dx + J‘W r(x)dx

-p -p -0 00’ +0

The indeterminacy occurs with either of the middle two pieces,

00’ +0
j r(x)dx and r(x)dx. The second of these two we can see in the mi-
-0 0.0

croscope of Figure 26 as the area under the curve from the origin 0 - 0’ to
0. If the curve were flat, we could use a rectangle with the right side as the
height, 0" - oo’ = 1, but this value is clearly too small in this case. Using the
left side as the height gives 0' - o0 - 00’ = 0’ - .0 = 6 in the projectively ex-
tended real numbers and 0’ - o0 - o0’ =0’ - 00 = |gp| in the affinely extended real
numbers. If we use the trapezoidal estimate, we still obtain an indeterminacy:

o (%> =0 <w> =0 - o0 = ¢ or |gp|. Further unfoldings

1 1
yield the same indeterminate result, since 0" oon o= for any n.
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Any approximation to this area that involves the left endpoint gives in
an indeterminacy, and any approximation that does not is inaccurate. There-
fore we cannot integrate directly through this pole. The same problem occurs
with any other pole.

This leaves us with two alternatives:

1. In real space, integrate piecewise, once to the left of the pole,
and once to the right.

2. In complex space, integrate around the pole.

The antiderivative of — is In x, but since this is imaginary for negative
x

x, it cannot be used as an integral in real analysis. Instead we use the fact that
Inx = In(|x|sgnx) = In|x| + Insgnx and integrate either completely on the
positive side of the real axis or completely on the negative side. In this case,
the In sgn x terms cancel, and the effective antiderivative is In |x|.

In complex analysis, the antiderivative is In x, and the path of integra-
tion is connected. This is discussed in detail in Complex poles (p. 105).

Axial function

1+ 1-
: : : |
-1 0 1 -1 0 1
14  —— ]
F1G. 27: FIG. 28:
Axial function A(x) Sample of integral of

axial function ACV (x)
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0
Figure 27 shows the axial function A(x) := pra multivalued function
whose graph coincides with both the horizontal and vertical axes:

0 forx#0
A(x):{gb forx =0

As a multivalued function, the continuity of A(x) is of three types, as
defined in Continuity (p. 52):

o Classwise continuity: The axial function is classwise discon-
tinuous at 0 because A(0') = {0} and A(0) = ¢.

o Conjunctive continuity: The axial function is conjunctively
discontinuous at 0 because {0} cannot be mapped bijectively

to 6.

e Disjunctive continuity: The axial function is disjunctively
continuous at 0 because A(0') =0 € ¢6 = A(0).

The singularity of A(x) at 0 is a removable singularity (p. 72). A(x)
is not regular in any region that includes the singularity at x = 0, since A(0)
is indeterminate. The function is not semiregular in these regions, since the
power series using offset derivatives at the singularity equal zero. Hence the
function is irregular in these regions.

dA(x) d0 _ 0

The derivative of A(x) is A(x), since A'(x) = I - Iix - o

0 O
el == Since the original derivative is indeterminate at 0, as it is at a pole, the
Fundamental Theorems of Calculus do not hold here. See Poles (p. 85) for a

detailed discussion of this point.
To compute the integral of A(x):

e In real space, integrate piecewise on the left and right sides.
This allows us to choose independent constants of integration
for the right and left integrals. One possible integral of A(x)
is shown in Figure 28.

e In complex space, integrate around the singularity. See Com-
plex axial function (p. 107).
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O | | I

F1G. 29: Axial function A(x)
as proper unfolded reciprocal function

The axial function can be made semiregular at the unfolded level by
choosing a proper unfolding. In this case, we use the proper unfolding A(x) :=

g shown in Figure 29.

Function sin %

—_
—
W

’I_\ (o)
—_— ]
@'
N
§le>

FIG. 30: Essential singularity of S(x) :=sin 1
with microscope view of y axis infinitely expanded in x
direction and unchanged scale in y direction

1
The function S(x) := sin p is graphed in Figure 30. Like the pole in Fig-

ure 26, S(x) at 0 maintains its shape from macroscope to microscope. Within
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the microscope, S(0) takes on every value within the interval [-1,+1]. Alge-
braically we can see this by observing that oo + r = oo for every real perfinite r,
so sinco = S(0) = [-1,+1].

Since S(0) is not determinate, it is a singularity. An offset value S(0')
can be any point within [-1, +1], so the offset values are not uniform or semiu-
niform, and the singularity is not a removable discontinuity or jump disconti-
nuity.

The following calculation shows that the singularity is also not a pole.
As defined in Types of singularity (p. 72), a pole of a function f is a point p

such that f(x) = gE ;

the multiplicity of the root is finite. The following converts the power series
for S(x) to a fraction, using the Pochhammer symbol (n), to denote the falling

for which (n),, = (1)1 =n!, (n); =n, (n)o = 1.

, ¢ and h are analytic, h(x) has a root (zero) at p, and

factorial function ———

(n—r)!’
gl 1 1,1
x x 3lx3 5lx°
3x2-1 1

T * 55

- 5lx* — (5)ox? + 1 1

- 51x5 T Ty

7 - (Daxt+ (7)x* -1 1

- 7!x7 + 91x9 -
= 32 (1)K (200" + 1) (00 gy ¥ 0
(200" + 1)1x20'+1

The denominator of the final fraction has a root at x = 0 of infinite
multiplicity. Since the singularity is not a removable discontinuity, jump dis-
continuity, or pole, it is an essential singularity.

1

0s
- is indeterminate at the singularity, but
x

The derivative S'(x) = —

cost
the antiderivative fS (x)dx = xsinx + J‘ Tdt + k is determinate.

1
x
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Weierstrass function

Weierstrass gave an example of a class of functions that are continuous
everywhere but differentiable nowhere in conventional analysis. We now ex-
amine a function which is simpler but still shows the essential features of the
original Weierstrass functions:

® in (2" in?2 ind
W(X) = Z —Sln(Zn x) =sinx + —Sll’lz ad + Slr; X +
n=0

Conventional analysis cannot differentiate this function because
W(x+06)-W(x) S W(x +06) - W(x)

hrgg)nf 5 hr? j(},lp 5 ,

at every point, and thus

W(x+6)-W(x)
6

W'(x) = lim
() = lim
does not exist anywhere.

Equipoint analysis does not have any such requirement. It requires
only that a function be defined on an interval. Then, using an unfolded 0’-level
arithmetic, it computes

/
W (x) = Wi(x + 00), W(x).

The conventional theory of infinite series allow us to use the commu-
tative, associative, and distributive properies of addition and multiplication
on infinite series only in restricted cases. Equipoint summation, on the other
hand, developed in [CD] for the summation of divergent series, allows unre-
stricted use of the these properties with no known inconsistencies. Therefore,
when coupled with the algebraic definition of derivatives developed here, we
feel confident that we can differentiate W term by term as we would a finite
sum, and so:

W'(x) = i cos(2"x).
n=0

Another way to differentiate this function is to define it with an un-
folded upper limit:

&, sin(2" in2x sin4
W (x) Ezsm;1 x) :sinx+sm x+sm x .

~ 2 4
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and differentiate at an unfolded level beyond the unfolding of the upper limit,
where W (x) is smooth, just as sin x is smooth at an unfolded level:

1
0/ —

T 0012

, OdW (x
Wy (x) = O’d_)(c )

Z cos(2"x).
n=0
Figures 31 and 32 show W (x) and W'(x).

In the first calculation, the derivative W'(x) is can be calculated at every

point within an unfolding of x and is single valued everywhere, but the offset

values W (x +0') vary with each 0/, so W (x) is not continuous anywhere. Thus
every point is a singularity, each of which is nonisolated.

In the second calculation, W (x + 0') matches W (x), but only at levels of
unfolding beyond 0'. It can be said to be continuous at those unfoldings

£

F1G. 31:
Weierstrass-like function W (x)
92
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FIG. 32:
Derivative of Weierstrass-like function

Fourier transform

The Fourier transform, in the unitary asymmetric form, maps a func-
tion f(x) to the transform f (k) by

+o0

fk) = f f(x)e™2m* dx.

—0

We will not redevelop Fourier theory here but only note the Fourier
transform of some proper unfolded functions. These are variations of the two
elementary transforms

£(x) f(k)
1 5(k)
eZJriax ) (k _ (1)

The proper unfolded variations are

£(x) f(k)
0 0'6(k) = 6k
0e2iax 06(k - a) = 6k,

These two results assume that the width and height of 6(0) are 0’ and
%. These connect the Dirac delta (p. 79) 6 (x — a) with the Kronecker delta (p.
78) Oy -
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Other singularities

I
—_
— e

FIG. 33:
Gapped interval in G(x)

\J \JWU\/

-1+

— | ——~
\ U

FIG. 35:
Interval of poles

inJ(x) = &

94

1

T
1
2

ﬁ/\(\mf\ A

FIG. 34:
Accumulation point

of poles of C(x) = csc 1

1

FIG. 36:

Interval of intervals

in T(x) = sin wa
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Nonisolated singularities. Examples of nonisolated singularities are
shown in Figures 33 through 36.

e Figure 33: A gapped interval in the function
0 for|x|>1

Glx) := {@ for x| < 1
e Figure 34: An accumulation point of poles at x = 0 in the
1
function C(x) := csc L Every neighborhood around x = 0,

and the unfolded point itself, has an infinite number of poles.

1
e Figures 35: An interval of poles in the function J(x) := —

For every x € [-1,+1], J(x) is a pole. For x = 1, J(x) = ¢,
and elsewhere J(x) = 0.

e Figure 36: An interval of intervals in the function T(X) =
1
sin pret For every point x € [-1,+1], T(x) = [-1,+1]. Else-
where, T(x) = 0.

e Characteristic function of the rational numbers. See Using
class counts in derivatives and integrals (p. 130).

Complex singularities. The following are analyzed in the Complex
functions (p. 96) chapter.

e Complex poles (p. 105), the complex ananlogs of real poles
(p. 85) described above.

e The complex axial function (p. 107), the complex analog of
the real axial function (p. 87) described above.

e The complex function ex (p. 108), which includes the real
function sin % (p. 89) described above.
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COMPLEX FUNCTIONS

Complex derivative

The complex derivative is similar to the real derivative but allows
folded and unfolded complex numbers and extended complex numbers and
functions.

It is single valued and finite if the real and imaginary partial derivatives
are single valued, finite, and analytic. It may be multivalued otherwise. For
example, at x = 0, for real x,

dlx| _

E - :l:].,
while for complex z,

dlz| _ &

FERLE

The general complex derivative (possibly multivalued, infinite, and /or
non-analytic) is as follows. For a complex function f(z) we first define

f(z)=Ref(Rez+ilmz) +ilm f(Rez +ilm z)
= g(x,y) +ih(x,y).

We then have

0'(;lf(z) _ g(Re(z+0'),Im(z+0)) - g(Rez,Im z)

%dz o

N ih(Re(z +0),Im(z+0")) — h(Rez,Im z)

OI
_ g(x+Re0,y+Im0) - g(x,y)
. h(x+Re0,y+Im0') - h(x,y)
i
OI
_8(x+Re0,y+Im0) - g(x,y +Im0) Rel
B Re (Y o
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. g(x,y+Im0') - g(x,y) “Re o
Re (Y o
h(x+Re0’ y+Im0) -h(x,y +Im0) Im0
Im 0 o
h(x y+Im0) -h(x,y) Im0
Im0O 0
_0g(x,y) Rel 6g(x, y) Im 0
- a0 oy o
ah(x y) Re 0/ oy .Oh(x, y) Im0
ox o oy o
_ 0g(x,y) +idh(x,y) Rel N 0g(x,y) +idh(x,y) Im0
ox o oy 0
_0f(z) cosarg( . 0f (z) sinarg(’
“ORez sgn0  odlmz sgn0

If f is analytic, then this becomes
df(z) _0f(z) cos argO bf(z) sinarg ('
dz ~ O0Rez sgn0 Tl ORez sgn
_0f(z) Re0+ilm0 _0f(z) 0 _ 0f(2)
aRez o ~9Rez 0 ORez
af _cosarg () . 0f (z) sinarg(f
B Im z sgn 0/ O0lmz  sgn(

laf z) Re0 +ilm0 _ af(z) o 6f(z)

olmz o N aImz O’_ almz

As an example of the general complex derivative, let f(z) := 3Rez +
2iIm z, which is not analytic. We then have

0/df(z) _ 3cosarg(' +2isinarg (/
07y sgn 0’ '

Letting 0 := arg (, this becomes
O'df(z) _3cos0 +2isin6
0y eif
= [cos? 0 + 2] — i[cos O sin O]

Letting x := =Re¥ s andy := Im S gives
1 5
x = 5 cos 20 + >
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1
y= -5 sin 20

af
dz

F1G. 37:
Derivative of f(z) =3Rez +2ilmz

The derivative is the class of all points on a circle with radius 1 and

centered on 2, shown in Figure 37. Since the partial derivatives are constant
with respect to z, so is the total derivative. While the derivative does not de-
pend on z, it does depend on 0. When arg 0’ = 0, the derivative is 3, but when
arg (' = 7, the derivative is 2.

Generalizing this example, let a and b be real coefficients, and
f(z) :=aRez+bilmz

Odf ()

o =b+(a-b)cos’0 + (b—a)isin’0

z
<x_a+b>2+ 2_<a—b>2
2 y=\—72)"

If a = b, this becomes

f(z) :=az
df (x) _
dz 7

and, since a is real, the circle shrinks to the point z = a.
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The Cauchy integral formula

FIG. 38:
Contours for path independence
around a singularity

The Cauchy integral formula is a theorem of complex analysis that is
conventionally proved with limits. Below is an equipoint proof. First we derive
a preliminary theorem which is also used in the derivation of Laurent series
coefficients (p. 103).

Given a function f that is analytic within a region R with
boundary B, with the possible exception that f is not analytic
at some point a € R, and any closed path C within R that
goes once around a, then [; f(z) dz = [ f(z) dz, assuming
that we integrate along B and C in the same direction.

PROOF. We start by drawing the contours shown in Figure 38:

Complex functions 99



e Without loss of generality, assume B is directed counterclock-
wise.

e Draw a path D coincident with C but directed clockwise.

e Draw a directed line E from any point on B to any point on C,
and line F, separated from line E by a distance of 0, directed
out from C.

e Let G be the infinitesimally short portion of B between E and
F, and let H be the portion of B with G removed. Then H :=
B\ G='B.

e Let ] be the infinitesimally short portion of D between E and
F, and let K be the portion of D with | removed. Then K :=
D\ J=D.

e Let L be the concatenation of, in order, H, E, K, and F. That
is, start from the point where F meets B, go almost all the way
around B to E, go in on E to D, go almost all the way around
D to F, and go out on F to the starting point at B.

L is a closed contour which does not include a. By the Cauchy-Goursat
integral theorem, we then have

0=| f(z)dz

%

(z)dz+J’ f(z)dz+ij(z)dz+fFf(z)dz

)
(
( f(z)dz+f f(z)dz
[ f@dz+ | f)az
)

f(z)dz - f f(z)dz,

or

Lf(z) dz = fcf(z) dz. O

We note that the curves B and C can be finite, infinite, or infinitesimal,
with lengths of E and F to match, and the separators G and ] infinitesimal
compared to B and C.
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FIG. 39:

Contours for proof of the
Cauchy integral formula

CAUCHY INTEGRAL FORMULA: Given a function f(z) that is
analytic in a simply connected region R and on its boundary
B, and given a point a € R, then

fla) = 1 f(z)dz

T2wi)y z—a

PROOF. We draw contours as in Figure 39. Without loss of generality,

we again assume B is directed counterclockwise. We draw an infinitesimal cir-
cle C, of diameter (', also directed counterclockwise, around a. By the previous
theorem, the integral around the boundary B equals the integral around the cir-
cle C. To integrate around C, since it is infinitesimal, we make the substitution

z=a+0¢e?

dz = 0'ie"
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and compute

f(z)dz EI f(a+0ic®) 0icdo

c z—a 0et®
E. 1. 10 d9
1fcf<a+016 )
:if(a)fcde
=2urif(a)
fla) = —— [ {24z 4

27wi ) z—a

or

We now make the point a Variable and rewrite this theorem as

fo)= o [ L

2.71'le2

CAUCHY INTEGRAL FORMULA FOR DERIVATIVES: Given the
same conditions as in the previous theorem,

£ (z) = n!J‘ f(w) dw

201 ) g (w — z)m+1’

PROOF. Since an integral is an infinite series and a derivative is a quo-
tient difference, and since we establish in the numeristic theory of infinite series
[CD] that we can handle them much as we do finite series, e.g. they commute,
associate, and distribute as finite series do, we can calculate simply:

df(z) d 1 f(w) dw

dz dz2mi)y, w-z
_ 1 f(w) dw J‘ f(w) dw
=20 —(z-0) 2xi0
f [ flw)  f(w)
2.71'10’ w-(z-0) w-z
1 d f(w) |
2.71'1 dz w — z
f(w) dw

" 2 s (w-2z)?2"

Further differentiations yield the theorem. [J
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Taylor and Laurent series

The numeristic theory of infinite series [CD] also establishes that certain
series, when summed through extended numersitic arithmetic, are valid not
only where they converge, but also where they diverge. The following is one
such series, which is valid everywhere in the complex plane, even though it
converges only within the unit circle:

1 [ole)
—:1+x+x2+x3+...=Zxk
1-x pany

We now derive two alternate forms of this series, which we will use in
the proofs of the following two theorems:

1l
g
|b—\
Q
| —|
—_
+
NI
||
QS
VR
NI
||
QR
~
N
+
VRS
NN
||
Q|
~
w
e

“ey

Il
N
| | —
Q
| p——
—_
+

w-a w-a\’ w-a\’
e (L) ()]
1 L w-a (w-a)?* (w-a)®

z—a (z-a)? (z-a)® (z-a)*

TAYLOR SERIES COEFFICIENTS: Given a function f(z) that is
analytic within a simply connected region R and a point a €
R, then, for any z € R:

"(a (3) a
@) = £(@) + (z-a)f (@) + (z- LD a2
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PROOF. Let C be any closed path around a. C could be infinitesimal.
Using the first of the above identities and the n-th derivative Cauchy integral
formula, we compute
1 f(w) dw
2wi ) w-z
LJ‘ f(w) dw s z—aJ‘ f(w) dw s (z - a)? J‘ f(w) dw .
c c c

Do w-a 20ri (w — a)? 20ri (w - a)?

f(z) =

= fla)+(z-a)f'(a) + <z—a>z% +(z- a>3—f(3;!(a) .

= ® (a)
:kz(:)(z—a)kf k!a .0

LAURENT SERIES COEFFICIENTS: Given a function f(z) that
is analytic within a region R between an outer boundary B
(which may be infinite) and an inner boundary C (which may
be infinitesimal), and given a point a inside C (so that a ¢ R),
then, for any z € R:

2 (z—-a)k w) dw
f(z) = k;w ( 2_7”-) J‘B (J:U(_)a)ku'

PROOF. Following Figure 38, let L be the concatenation of, in order, H,
E, K, and F. Let z be any point in R and let g(w) := % Then

j g(w)dw = [ g(w) dw + f g(w) dw + f g(w) dw + f g(w) dw
L H E K F

g(w) dw + IK g(w) dw

(H
= ( g(w) dw+f g(w) dw
B D
(
B

g(w) dw - jc g(w) dw.
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Since L encloses z, and using both of the above identies,

£ = 5 [ gt dw
1
i), ( g(w) w——f g(w) dw
1 ( f(w)dw J‘ f(w) dw
2ri ) g 2o c w-z
1 [‘ f(w) dw L Z-a fw)ydw (z-a)* ( f(w)dw
27i )y w 27i ) (w—a)? T o g (w-a)d

1
+mf f(w)dw+mf f(w)(w - a) dw

j f(w)(w-a)*dw +.

271'1(2 a)?

z-a)k ( fwydw & .
B Z 27ri fB (w — a)k+? * é 2][i(z_ )k fcf(w)(W— a)"~ dw.

The integrals in the second sum vanish since they do not enclose any
singuarities. Hence

& z-a)f [ fw)dw
f(z)_kzz_w 27 J‘B(w—a)k“'D

Complex poles

In Types of singularity (p. 72), we defined a pole of a function f as a
8(x)

h(x)
and the multiplicity of the root is finite.

point x such that f(x) = , g and h are analytic, h(x) has a root (zero) at x,

In numeristics, every elementary function is defined over the whole
complex plane, even at its singularities. Since a function may be defined at a
singularity, the domain of such a function may still be simply connected.

As in conventional analysis, we transform a contour by parameterizing
it into a directed real interval.
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FIG. 40:
Contour G consisting of
three portions A, B, C

In real analysis, as described in real poles (p. 85), the effective an-

tiderivative of p is In|x|, which assumes that we integrate either completely

on the negative side of the real axis or completely on the positive side.

In complex space, the antiderivative is In x, and the path of integration
is connected. A path which includes an infinitesimal region is shown in Figure
40. This path, contour G, has three portions that link two points, -1 and +1:

A: A path along the real axis from -1 to -0,

B: An infinitesimal semicircle around the origin from -0’ to +0’,

and
C: A path along the real axis from +0' to +1.

In real space, we must omit portion B and use the effective antideriva-
tive In|x|. Although this path includes all but one point of the real interval
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1
[-1, +1], the resulting integral of p differs from the complex version:

+1 i
da da -0 +1
f —xsj x| +inlxl| = [0 - 0] + [0+ 0] = 0.
1 X A+C -1 0

In complex space, we can include portion B and use the actual an-

tiderivative In x:
-0 0 o 0 0
%EJ‘ %=J‘ %+J‘ d9+f %Elnz| +9| +Inz
A -1 Z x 1 Z -1 z

+1

- +0’

+B+C 2
= [In(-0") —=In(-1)] + [0 - or] + [In1 - In0']

=ln0 -oxr-In0' = -

G 2

Additional windings around the pole, inside this same infinitesimal
complex space hidden within the real line, give the class of values (2Z + 1)ri.
This agrees with the Fundamental Theorems of Calculus:

— =Inz

dz +1
- | =Inl-In(-1) = 2Zx - (2Z + )7 = 2Z+ D).
. .

With other poles, the discrepancy between real and complex integrals
happens whenever the integral of portion B is nonzero. Some examples of this

integral:
( d_x=2Z+1
Jp X 2
s,
Jp x?
jBi—f=o.

Complex axial function

The axial function is defined:
[0 forz#0
A(z) '_{96 forz=0

Its name derives from the real version of this function, discussed in Ax-
ial function (p. 87). The graph of the real function coincides the coordinate
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axes. The complex version of this function coincides with the plane that con-
tains the two axes of the domain, and the plane containing the two axes of the

range.

In real space, an integral through the origin yields an indeterminacy,
as it does with a pole. To integrate from one side of the origin to the other,
we have to integrate piecewise on each side, which yields two independent

constants of integration.

In complex space, we can integrate on a path around the origin, as with

did with a complex pole (p. 105). This yields a single constant of integration.
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ReE(iImz):Reeﬁ = COS = ImE(iImz):—Imeﬁ = —sin

1
FIG. 41: Essential singularity of E(z) := ez

1

The function E(z) := ez is graphed via real and imaginary parts in Fig-
ure 41. E(x) is a complex version of the function S(x) investigated in Function
sin % (p- 89).

As a real function, E(z) has a jump discontinuity at z = 0, but as a
complex function, this is not the case. The offset values E(0') for imaginary
0" can be any value within [-1,+1], so the offset values are not semiuniform,
and the singularity is not a removable discontinuity or jump discontinuity. The
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following shows that it is not a pole.
et =1+ 1 + 1 +
B z  2x?
x+1 1
= o t...
x 21x2
2P+ (2x+1 1

512 Rt
3+ (3)ox?+ (B x+1 1
- 31 e
wl U U
— (OO/)oo’—kxoo —kool!xoo
k=0

The denominator of the final fraction has a root at z = 0 of infinite
multiplicity. Thus the singularity is an essential singularity.

PICARD’S THEOREM: If a complex function f has an essential singu-
larity at x, then f(x) = 6.

We will not prove the general case of this theorem, but we will show

that it holds for E(z), i.e. that E(0) = el = o. To do this, we will show that for

0

. . 1 . ; 1
given any z, we can find 0’ such that z = e?. If we write z = re"” = e?, then we

are looking for r and 0 such that Inr + i is infinite.

For infinite or zero r, Inr is infinite, and € can be any value. For
perfinite », 0 must be infinite. Since, as we saw in Function sin% (p. 89),

sinco = [-1,+1], then for an unfolded infinite 8, ¢ is on the unit circle as
it is for finite 0. Thus, for any z, Inr + i = oo’ for some complex infinite value

oo ,and 0 = i, d
(oe)
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CALCULUS OF VARIATIONS

Definition of functional

The terminology, definitions, notation, and approaches of the calculus
of variations are not yet fully standardized. The calculus of variations is also
known as variational calculus. Older mathematical literature also called it func-
tional calculus, but currently this term has a much different meaning.

Here we use terms, notation, and definitions which are common but
not universal. The approach that we use for the main topic of the calculus of
variations, the functional, is to define it as a type of infinite dimensional vector
space. For definitions and theorems, first we state the finite dimensional vector
case, and then the functional case.

For an entertaining account of the conventional vector space approach
to functionals, see [W16 p. 341-370].

We define an n-dimensional vector function to be of the form
fUxj})=h,
where {x;} is a sequence (not a class) of real or complex scalars, h is a real or
complex scalar, and the index j ranges from 1 to n. This could be stated as

f(x1,x2,%3,...,%,) = h, but we are choosing the first form to emphasize its
connection to functionals.

Example: Let

n

fx;}) = x]?

j=

—_

then forn =3, f({1,2,3}) = 14.

A functional
Flx(s)]=h

maps the real or complex function x(s) to h, where s, x(s), h are real or complex
scalars.
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Example: Let

1
F[x(s)] := fo x(s)%ds

then F[2s] = ‘35.

Iteration

Some definitions in this chapter use iterations of operators which we
denote with iteration notation. This notation defines an indexed iteration, a
simple type of recursion. Two or more relations are required to define a func-
tion recursively, but iteration notation can define an iterated function with a
single expression.

Discrete iteration denotes a finite number of iterations at unit intervals
of a function on an initial value, a seed:

[ h({a), k) :=r,, the last term of the following sequence:

k=m
rm = h(a, m)
1 = h(ri, k)
tn = h(ry_1,n)

Continuous iteration denotes an infinite number of iterations at in-
finitesimal intervals of a function on a seed:

?’ﬁlu h({a),t) :=s(t), the last term of the following sequence:
s(u) = h(a,u)
s(t) = h(s(t-0'(v -u)),t)
s(v) = h(s(v-0(v-u)),v)

Sums, products, integrals, and prodegrals are easily translated to itera-

tion notation:
n

S Fk) = T 40) + F(K)
k=m k=m

ITr0= Tk
k=m k

=m

b
[ feodx =" )+
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b
[ rwm =t ) s

Functional differentials

For a vector function, applying the definition in Differentials and inte-
grants (p. 55) gives the following definition of a partial differential of a vector
function:

9. f{x;}) = f({x; + 06, 1) — f({x;)).

Adapting this definition for a functional yields the following definition
for the (partial) differential of a functional:

%61x() F[x(5)] := Fx(s) + 0'6(s ~ £)] = F[x(s)]

The functional differential is sometimes called the variation of F, but the
corresponding derivative (p. 113), defined in the next section, is also some-
times called the variation.

The total differential of a vector function is the sum of the partial dif-

ferentials:
n

Oa{xf}f({xj}) = ZO/axif({xf})'

i=1

Similarly, the total differential of a functional is the integral of the par-
tial differentials:

+co

05*,X(S)F[x(s)] ZEJ‘ OBt,x(S)F[x(s)]dt.

-0

The omnivariate differential of a vector function is the repeated partial
differential for all variables:

0%, fUxi}) = T 0 (f({x; ).
i=1

Analogously, the omnivariate differential of a functional is the partial
differential repeated for each point in the function space:

O,%t,x(s)F[x(S)] ZEW 06t,x(s)<F[x(S)]>'

+0o0

t=—00
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In the independent function space, for both vector and functional cases,
the differentials are:

0x1...0x, = Hax,-
i=1
6ty () := ey x (1)

+00
0’%x(t) x(t) = ¢ T 0'6x(t)x(t)
t=—00

Functional derivatives

Applying the definition of derivative (p. 31) and the definition of par-
tial differential (p. 55) to a vector function, the partial derivative of a vector
function is:

of({x}) _ %9, f ({x;}) _ fUx +06;)) - f(Ux;))
axi o O'dxixi B o '

Analogously, the functional derivative is defined as:

5F[x(s)] _ %6:x(s)F[x(s)] _ F[x(s) +0'6(s - )] = F[x(s)]

6X(t) o 0’6x(t)X(t) - 0

As mentioned above, both the functional derivative and the functional
differential are called the variation.

Quadratic example, vector function case: Let
n
o 2
flxj}) = Zx]..
j=1
Then

(?)ng
of(lxj) = &
ox;  ox; :ézx" 0ij = 2%

Quadratic example, functional case: Let
b

F[x(s)] ::j [x(s)]%ds.

a
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Then

b b
6F[X(S)] _ Ia [X(S) +0’6(S_t)]2dS_J‘ax(S)2ds

ox(t) 0

b b
[ [x(s)* +2x(s) 0'6(s — t) + 0%6(s — t)*] ds — f x(s)*ds

voa a

0/
= ’er [2x(s) 6(s —t) + 0'6(s — t)*] ds

a

b
=2x(t) + f 0'6(s—t)ds = 2x(t).

a

For further reading on the conventional theory and applications of the
functional derivative, the author suggests [WC].

Higher functional derivatives

Higher derivatives of vector functions are, of course, iterations of the
first derivative. The following is the form using binomial coefficients that was
derived in Higher order derivatives and integrals (p. 60).

*f({xj}) _ fUx;j+2-065}) =2f({x; +06;:}) + f({x;})

0x? 02
5" (-1)+ ”> -+ 0kS),
I <k i+ OkouD
ox! on

Higher functional derivatives are also iterations of the first derivative,
which are derived analogously to the higher derivatives of vector and ordinary
functions.

&5°F[x(s)] _ Flx(s)+2-0'6(s—t)] —2F[x(s) + 06(s — )] + F[x(s)]
SF[x(H)]? 02
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1+ (™ F 0'k6(s —t
. _=k§( ) (k) [x(s) + k(s — )]

SF[x(O]" 0

The second functional derivative also called the second variation, etc.
Functional product rule

PRODUCT RULE FOR VECTOR FUNCTIONS:

o FUxiDg U] = £l D o8 ) + 8D e £ ((311).

i

PROOF. The proof is essentially the same as for the ordinary product
rule (p. 40).

o fx D)

_Fx + 088+ 06,) - F({x D)
_ .

= S st

+f({x;}) [gUx; +0'6;:}) — g({x;})]

+ [f({x; +0'6;,:)) - f({x; )] g(Ux;})

+ [f{x; +06;:)) - f({x; D] [gU{x; +0'6;:}) — g({x; )]
- fllxhgx )]

= S lrtEnsix)
+f({x;}) [gUx; +0'6:}) — g({x;})]
+ [f({x; +0'6;:)) - f({x; )] gUxj})
- f(txhg ()]

fUx)) [gUx; +06;:)) — g({x D] + gUx; D) [f({x; + 0651 = fF({x;})]
0/
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f({x,})a -g({xj}) + g({xj}) f( xj}). O

PRODUCT RULE FOR FUNCTIONALS:

6x6(t) (s)]G[x(s)] = F[x(s) 6x6(t) (s)] + G[x(s)]6x6(t)F[x(s)]'
PROOF.
s S FHOIGL()]
Flx(s) +06(s —1)]G[x(s) + 06(s = t)] = F[x(s)]G[x(s)]
= £

= 5 [Flx1GIx(s)]
+F[x<s>1[c[x<s>+0'6<s t)]— [x()]]

+ [Flx(s) + 0'6(s — t)] — F[x(s)]] G[x(s)]
+ [Flx(s) +0'6(s —t)] - S)]] [Glx(s) +0'6(s —t)] — G[x(s)]]
- F[x(9)]Glx(s)]]

- S [Fr@IcE®)
+ FLx(9)] [GLx(s) +0'6(s - )] - GLx(s)]]
+ [Flx(s) + 06(s - )] - Flx(5)]] Glx(s)]
- F[x(s)]G[x(s)]]
= S [FLe)] [GLx(s) + 065 - )] - Glx(s)]]
' G[x(s)] [Flx(s) + 06(s = )] - F[x(s)]]]

= F[x(s)] === Glx(s)] + G[x(s)]| s F[x(s)]. O

5() 5()
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Functional power rule

The power rule for a vector function follows easily from the product
rule (p. 115).

POWER RULE FOR VECTOR FUNCTIONS:
0
n __ n-1
—axi Z xj = nxl. .
]

PROOE.
5 Z(X] + 0,5]‘,1')11 - Zx]"
n_ ] j
E)xi ;xi - o
(T ek yk ok
Z 1< >x]. 0 6].,1.
_ ] k=
= il

Il
:
L
\Oﬁ
+
=
>
N
<
~3
N
Q
=
iR
=
e

POWER RULE FOR FUNCTIONALS:

6 n = nx n-1
mfx(s) ds = nx(t)".

PROOF.
5 f[x(s) +0'6(s —t)"]ds - fx(s)"ds
ol R 7
f < >x(s )i koks (s — 1)k
]
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= fnx(S)n_15(s —t)ds + fi <Z> x}’_kO'k_l5(s —-t)kds

k=2

= jnx(s)"_l6(s —t)ds = nx(t)" 1. O

This proof applies only when 7 is a positive integer and is analogous to
the proof of the ordinary power rule (p. 43) for n a positive integer. The other
cases of n in that proof also have analogs for functional derivatives, but they
are not presented here.

Functional transfer rule

The transfer rules show how the derivatives of certain vector func-
tions and functionals simplify to an ordinary derivative. They make use of
the power rules (p. 117).

TRANSFER RULE FOR VECTOR FUNCTIONS: If f is analytic,

o S ) = £ (x):
J

PROOF
0 a 0 &
o 2 f @) =50 3 daxy = 5= 3 b ay
b j k=0 L k=0 j
_% 0 kN
zé“"axl : szg;akkx

) =),

TRANSFER RULE FOR FUNCTIONALS: If f is analytic,

. jf ))ds = f'(x(t).
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PROOE.

6 5 (L 6 ¥
ox (D) ff(x(s))ds = 6x—(t) IZ arx(s)<ds = 20) Z j arx(s)"ds
=y ey fx(s)kds = Z arkx(t)<!

= mf(x(t)) = f(x(t).

Functional chain rule

The chain rule (p. 39) for ordinary functions has to be somewhat mod-
ified for vector functions and functionals. Since vector functions and function-
als reduce the dimensions of their domains, chain rules involving them must
start with domains of increased dimensions.

An indexed vector function maps a two-dimensional vector (a matrix)
to a one-dimensional vector. The indexed vector function f({x;;}); is evalu-
ated on the matrix {x;;} over all j, yielding a one-dimensional vector {y;}. The
indexed function f({x;}); is the same as the simple vector function f({x;}),
which maps to a scalar.

An indexed functional maps a two-argument function to a one-
argument function. The indexed functional F[x(s,t)]; is evaluated over all ¢,
yielding a one-argument function y(s). The indexed functional F[x(s)]; is the
same as the simple functional F[x(s)], which maps to a scalar.

The following are examples of indexed vector functions and functionals
and how they can be composed with simple vector functions and functionals:

x]k {Zx +yk}
k=1

(z)) = 3 2
k=1

FeUxuh) =2 > x5 + i
k=1 j=1
2

Glx(s,t)]s := f [x(s)? + y(t)z]ds

1
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F[z(t)] := fl z(t)dt

F[G[x(s,t)]s] f J‘ [x(s)* + y(t)*] ds dt

CHAIN RULE FOR VECTOR FUNCTIONS: Given a simple vector
function f and an indexed vector function g,

of (g({xjx})j) _ )y of (g({xjx}j) 0g({x)i})
ox; 4 0g({xjil); ox;

PROOF. Define the following:
{yn} = g(xjn});
{On} == g({xjn +0'6ij)j — g({xj})j-

Then
of (g(xjx});) _ f(gUxjk +0'6ij});) = f(gUHxjk});)
0x; B o
_ fUwe+0ed) - f(ye))
= 5
2 Lf Uy + O0kbin}) — f({ye])]

= 5
_ Z fQyxk +0k5161;}) —fUye)) (())_r:

Zaf({yk})ayn Zaf(g( x]k i) ag({x]n}).m

m 0g({xjn})j 0x;

CHAIN RULE FOR FUNCTIONALS: Given a simple functional
F and an indexed functional G,

6F[G[x(s,u)]s] _ ( 6F[G[x(s,v)]s] . 6G[x(s,v)]sdv
ox(t) ) 6G[x(s,v)]s 6x(t)

PROOF. Define the following;:
y(v) := Glx(s,0)]s
0, :=Glx(s,v) +06(s—t)]s - G[x(s,v)]s.
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Then
OF[G[x(s,u)]s] _ F[G[x(s,u) + 0'6(s - t)]s] - F[G[x(s,u)];]

ox() 0
_ Fly(w) +0.] - Fly(w)]
_ !
_ J(Fly + 0,6 - v)] - Fly(w)]) do
_ .
_ f Fly( + 0,6 -)] - Fly@)] 0,
_ . :
SFly(u)] 6y(o)
=) T5y) s ™
_ (SFIGIx(s,0)]] 8GIx(s0)l: ,

6G[x(s,v)]s 6x(t)

Straight line theorem

A classic example of the application of functional derivatives is a proof
that the shortest path between two points is a straight line. The equipoint proof
of this theorem is not only simpler than conventional proofs but, since a nu-
meristic function is unrestricted and can be multivalued, covers all possible
paths, including the case of a vertical line.

STRAIGHT LINE THEOREM: In a plane, the shortest path be-
tween two points is a straight line.

PROOF. We define an arc length functional L on the space of functions
f(X) and minimize L using its functional derivative.

b
LIFCO = | /147X ax
SLIFCOL . 6 (*
S = s ), Vi
d

= W\/l + f'(x)> by transfer rule (p. 118)
@ @

/1 + f(x)? df (x) dx
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fl/(x)
A/1+ f(x)?

The minimum occurs when this last expression is 0. This can happen in
two ways:

e When f"(x) = 0. In this case, f(x) is a horizontal or oblique
straight line of the form f(x) = mx + b, where m is finite.

e When f'(x) is infinite and f"(x) is finite. In this case, f(x)
is a vertical straight line at a point x = a and infinite valued
elsewhere: f(x) = co(x —a). O

Functional integration

Like vector and functional derivatives, vector and functional integrals
map a vector or functional (respectively) to a scalar. Unlike an ordinary inte-
gral, vector and functional integrals are not inverses of their respective deriva-
tives.

To define these integrals, we first look at the special case of a two-
dimensional vector. Since functional integrals are definite integrals that in-
tegrate over the entire real range, from —oo to +oo0, we examine only vector
function integrals of this type. From the definition of definite integral (p. 33)
and infinite bounds on integrals and path integral (p. 34), we have

< 3 , 20’k , 200'm\ 4
[7] rmacars B3 (oo 22 220) 2,

m=1 k=1 o S
I 2 2N
=kzZ:Z: ( " oo Oo>oo’2'

The general vector function integral, using iteration notation (p. 111),
is given by:

ff: f{xj}) dxy...dx, = f:f: fx;}) dx, ... dxadx
)

n

+00o

<f({xj})>dxi

—Q0

1l
NG
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Now we adapt this definition to functionals. Conventional analysis
usually denotes and defines the functional integral as follows:

fF[x(s)] Dx(t) := fj: e fj: Flx(s)] l_tI dx(t),

which uses an ellipsis for iterated integrals and and the product symbol []
for a continuous product. The equipoint definition instead uses continuous
iteration notation:

[Flx12x:= 777, [(Flx(s) 600

= S (rpo-2]) 2

i

For further reading on the conventional theory and applications of the
functional integral, the author suggests [K16].

Functional delta function

The functional delta function is the functional analog of the Dirac delta
function (p. 79). The functional delta function is a functional, not an ordinary
function. The integration property is expressed in terms of functional integra-
tion (p. 122).

First we examine the vector function case of n = 2.

[ rwwse-aew-vaxdy= [ fay)6w-bdy = b

—0o0 —0o0 -0

This enables us to easily define the general vector delta function in
terms of ordinary delta function:

6({x;}) = H6(x]-) = HI e 1Yl dy; = ff ¥ Zi e T dx,
j=1 jF1 v e \ %,

i=1
which has the property
[ sxmstx - @h T Tax = st
— i=1

n
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The functional delta function is thus defined:
+o0 +oo +00
5[x(s)] := T 5(x(s)) = T f e?ist dt = Iezm'f?é’ X©S)y©ds @y (s),

and has the property
fF[X(S)] 6[x(s) —a(s)] Bx(s) = Fla(s)].
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CLASS COUNTS

Class count comparisons

In set theory, the notation #C means the cardinality of the set C. Since
numeristics does not use the concept of cardinality, we use this notation to
mean simply the number of elements in the class C, which we call a class count.

We will need to address finite and infinite counts separately. We will
avoid saying that a class “is finite” or “is infinite,” because such characteriza-
tions do not distinguish between the elements and the count. A class could
have a finite number of infinite elements, or an infinite number of finite ele-
ments, or both finite, or both infinite.

Finite counts

A finite count can obviously be established through a bijection: #+1 =
2, for example, can be established through a bijection from 7, to +1, such as
n +— (=1)" or n — 2n — 1. For all finite counts, the count is independent of the
bijection.

Infinite counts

Of course, the counts of all infinite classes are the same value:

#N = #Q = #R = #Ccomplexnumber = .

On the other hand, as with other infinite quantities, ratios and other

d
operations between two infinite values may be finite. Much as the value of d_y
x

#
depends on the relation between x and y in unfolded space, %, so #C — #D,

and other such expressions may depend on the relation between the counts of
C and D in unfolded space, which in turn may depend on the way that C and
D are mapped to each other.
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Comparing N* and Z*

As an example, consider N and Z*. If we map Z* to N* with a function
f that takes n to |n|, then f maps two elements of Z* to each element of N*. If

*

=2.

#7

oo’ := #N*, then #7* established through this map is 2e0’, and T

But if we map Z* to N* with a function g that takes 7 to 2n for positive n

and —2n-1 for negative n, which maps ...-3,-2,-1,1,2,3...t05,3,1,2,4,6....,
A

then #7* established through this map is o', and NP

Principles of infinite counts

As the above example shows, if the count of folded elements in a class is
infinite, then comparing the count to other class counts in unfolded space may
depend on the map or maps that are used to connect the classes.

Given f : A — B, then #A is the number of mappings in f, and the
relationship of #A to #B is determined from the way f maps A to B. We will
use the notation (# : f) before an expression containing such a comparison to
show that the classes are connected with the map f. In the above example,

#7* #7*

(#:f)m =2, and (#:g)#N* =1

General rules for comparison maps

In general, for a class count comparison map f:

o If f: A — 7, is bijective, then (# : f) #A = n. In this case, A
has a finite count, which is independent of f.

o If f: A — Bisbijective, then (#: f) #A =' #B.

o If f: A— BUC isbijectiveand BNC =0, then (#: f) #A ='
#B + #C.

o If f: A— (B,C) is bijective, then (#: f) #A =" #B#C.
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The notation (B, C) means the Cartesian product of B and C,
{(b,c) | b € B A c e C}. Introduced in [CN], this notation is
used to avoid confusion with B x C, which means a product
distributed over the elements of Band C, {bc | b€ B A c € C}.

o If f: A— B“Cisbijective, then (#: f) #A = #B*C.

The notation B<€ means the class of functions from C to B,
{f | f:C — B}. Introduced in [CN], this notation is used
to avoid confusion with B¢, which means the elements of C
distributing powers over the elements of B, {b° | b€ B A c €
C}.

From these, we can derive the following:

o If f : A — B is surjective and maps n elements of A to one
element of B, i.e. #f(a) = n for each a € A, then #A =' n#B.

o If f: A — B*"isbijective, then (#: f)#A =' #B".

The notation A*" means A extended to n dimensions:
(z{ﬁ, éﬁ,...,A). Introduced in [CN], this notation is used to
n

avoid confusion with A", which means a power distributed
over the elements of A, {a" | a € A}.

o If f : A — 74° is bijective, then (# : f)¥A = 2'C. This is
the number of subclasses of C, as each subclass corresponds
to a selection function that takes C to a class of two logical
elements, true and false, which decides whether each element
is in the subclass.
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Comparing Z and Q

. n . . . . .
. 0 . . . . . .
m
FIG. 42:

Map s from (m, n) to line of slope %

A class x is integrous if there is a bijection between the elements of x
and some subset of the integers. Classes with a finite number of elements,
N, and Z, are all integrous. In set theory, such classes are called countable or
denumerable, but from a numeristic point of view, these terms are misleading,
since we can count and compare the number of elements of any class, including
the nonintegrous classes R and C.

Through a well known diagonal technique, it is possible to construct a
bijection d* between N and Q*, and a similar bijection d between Z and Q. This
means that

(#:d%) #N=' Q"
(#:d)#7 = Q

and that Q" and Q are integrous. But d is not a very natural map, since among
other things, it does not preserve order.
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For a more natural map, we define s : N> — Q*. Figure 42 shows
this map geometrically. s takes (m,n) € N*? to the line through (m, n) and the

origin, which has slope % € Q. This is a many-to-one map with duplicates

whenever m and n are not coprime (relatively prime).

Cesaro and others (see [H75, thm. 332, p. 269]) have shown that the

ﬁ = J%, where ¢ is the

probability of two random integers being coprime is

Riemann zeta function. Therefore

Q6
Big) — = 2
( S) #D\‘XZ .71'2
Q3
#:5) g0a = 2
where s, : N2 — Q
4 3
B:55) —— =
(#:83) 37 = 32

where s3: 7% = Q.

Comparing N and R

We first map N to the half-open unit interval I = [0, 1) through base two
radix representations (base two decimals). The expansion of r € I consists of
a radix (decimal) point followed by an infinite string of binary digits. Such a
string can be considered a map k : N — Z,. We define a class K of all possible
such k, and then we defineamap j: K —» I,k r.

K has 2™ elements, each of which maps to a unique r, except for du-
plicates of the form 0.(digits)0111... = 0.(digits)1000. .., which appear at #N
unique positions. Hence

(#: ) #1 =" 2™ —#N.

In order to cover the real line, we make #Z copies of I, using the map
y:R—1I,r—r-|r|. Hence

(#: k,y) #R = #7#]
(#:k,j,y) #R =/ #7 2™ —#N] .

Letting oo’ := #N, we have

#:k,jy) VER = Waz N/om - N
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8]~

= (200) ¥ (2% - o)

U
In200’ In Zwl oo’ 2 %
=e « e oo! = @2 @ 2% -/
/ U
(In2)22% (In2)32%

! eole(lnz)zwl—l = g2’ = Q.

A similar result holds for any radix. For a general j, which uses a radix
b instead of 2, we obtain

#:k, jby) VER=b.

Comparing R and C

If we define p : C — R*?, a + bi — (a,b), then
#C

Using class counts in derivatives and integrals

We now use class counts and other equipoint arguments to calculate
the derivative and integral of the indicator or characteristic function of the
rational numbers:

|1 forxeQ
[QI(x) '_{0 for x ¢ Q.

#
First we calculate %, using the maps s, k, j, and y from the previous

section:
3 x2
#Q = #N
#:5kijy) —=IT——
( Y wR >
_ 20
1+#NIn2 + (#N;Q)z (#N;‘Ds + (#Nf!‘2)4 +...
3
_ a2
= In2)2 . #N(n2)3 . #N<2(In2)*
e+ B BT AT,
3
JZ’Z
= (In2)2 |, oo'(In2)3 , oo'2(In2)* =0
02+ 0 1In2+ 5= + 2577 + 27—+ ...
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Next we investigate the continuity of [Q] (x) using the definition above,
namely that [Q](x) is continuous at x when [Q] (x + 0') = [Q] (x).

To compute [Q](x + 0'), pick an unfolded integer oo’ and let 0 := 10~
The oo'-th digit of the decimal representation of x is the origin of the space
unfolded with 0". Call this digit d. The unit in this place has the value 0'.

If x is rational, the decimal preserves the repetend of x, even in the oo'-
th place. Adding the unit 0' to x changes dtod + 1 for d <9, and 9 to 0 with
a finite number of carries, with one exception noted later. With this change of
at least one digit, the repetend is broken, and the number is no longer rational.
Hence [Q](x +0') =0 # [Q](x), and [Q](x) is discontinuous at x.

The exception to the above process occurs when the repetend is 9, in
which case there are an infinite number of carries. The 9s to the left of the oo'-
th place change to 0, but the digits to the right of this place remain 9. In this
case also, the repetend is broken, and [Q](x) is discontinuous at x.

If x is irrational, the same thing occurs, except that there is never a
repetend of 9, because there is never any repetend. So there are at most a finite
number of carries, the folded digits are never affected, and [Q](x + () is also
irrational at the folded level. Hence [Q](x + 0') = 0 = [Q](x), and [Q](x) is
continuous at x.

This differs from the conclusion of conventional analysis, which says
that the function is discontinuous everywhere because the limit lim,_.,[Q] (x)
does not exist at any point. In equipoint, while there are an infinite number of
discontinuities in any finite interval, the function is continuous at most points,
since

o H
#:5,k,j,y) ﬁ_o

#R\Q)
#R =1L

#:s5,k,j,y)

We can now compute the derivative of [Q](x):
0d[Q](x) _ { 8y, forxeq
%dx |0 forx ¢ Q.

= Z 5;2 (x).

xeQ O

(#:s,k,j,y)

j [Q](x) dx is simply the ratio ;Lﬁ, which we have already seen is 0.
0
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STRUCTURE OF UNFOLDED
REAL NUMBERS

Decimal expansions

Folded real numbers

A folded real number r, identified with a decimal expansion, has the
form

+00
r= Z d,10™,whered,, € 71, =0,1,...,9.

m=—co

For example, for

V2=1414...
we have

d,=0forn>0.

dg=1

d,=4

d,=1

dsz=4

Conventional analysis allows only a finite number of nonzero digits to
the left of the decimal point, i.e. it requires that there be an n such that d,, = 0
for all m > n. But here we allow an infinite number of such digits and call such
a digital representation an infinite left decimal. An example of a repeating

infinite left decimal is ... 333 = 3, which means an infinite number of 3’s to the

left of the decimal point, just as a repeating right decimal 0.333... = 0.3 means
an infinite number of 3’s to the right.

Both left and right infinite decimals lead to duplicates, but we do not
need uniqueness for this discussion, and allowing both makes the discussion
easier.
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9 =...999 and 0.9 = 0.999... are examples of such duplicates, as we
will now see. We start by recognizing them as infinite geometric series:

- 9 9 9
09—0999—E+m+m+

9=...999=9+90+900 +....

SUM OF AN INFINITE GEOMETRIC SERIES:

e o]
Zak=a"+a"+1+a"+2+...=
k=n

PROOE. Let

(oo}
x:=Zak=a”+a”+1+a”+2+...
k=n

then

(o)
ax = Z ad=a™ +a"? + a3+ .

k=n+1
x—ax=a"
an
X = O
1-a

Unlike conventional theories of convergent and divergent series, the
numeristic theory of infinite series, equipoint summation, developed in [CD],
allows the use of ordinary commutative, associative, and distributive proper-
ties of addition and multiplication of both convergent and divergent infinite
series without any known inconsistencies. Equipoint summation allows the
above result for both the convergent (|a| < 1) and divergent (|a| > 1) cases.

Using this result for the above examples, we have:

© 2
09=0999...=9>10%=—2L-=1
k=1 -1

—_ O 9
= ... = 1k:—:—1

9 999 9% 0 10
) 3 1
03=0333...=3)10F=-12 —_
é 1-5% 3
- & 3 1
_ _ k_ _ v~ - __
3=...333=33 10" = -—5 ==

k=0
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The numeristic theory of repeating decimals, including infinite left dec-
imals, is developed in detail in [CR].

Unfolded real numbers

In general, an unfolded real number is the sum of one or more of: (1)
an infinite number, (2) a perfinite number, and (3) an infinitesimal number.

In the first unfolding, an arbitrary real number r takes this form:

TET+100,+T0+1’,10I

+o00" -1 +00" -1 +o0" -1
= D, daml0™00' + D) dow10”+ D) dg,10m0,
m=—co" m=—co" m=—oo"
where oo’ := % and r,q, 7y, 71 are folded real numbers, and we choose o” so

that this becomes a single sequence from smallest infinitesimal to largest infi-
nite:
10" 00’ =10"" and 107 =10""0' = 10" oo

o0 = 10200”
1 1
n __ I !
o' =3 log,, ' = —Elogloo .
Then
+m”_1 U "
r= D daml0®® "+ do 10" + d_y 107277
m=-co"
300" -1
= D dulo”
m=—3c0"
di1m-2er for +00” <m < +300" -1
where d,,, = { dom for —c0”" <m < +0” -1

Ad_1mi2er  for =300" <m < —o0” -1
or dyy = dim-2keer fOor 2k = 1)oc0” <m < (2k +1)o0” =1 and k = +1,0,-1.

In the second unfolding,

Fr=rp002+rq0 +19+710 +7_,0?

+00" -1
D duoml0™ 007 + dig y10™ 00" + do10™ + d_y 1y 10™ 0 + d_5,10™ 07

m=—oo"

+00" -1

" " _ " _ "
D Auom10% 4+ d i 107 4 dgy 10™ + d 1072 4+ d_p 1074
m=—oo"
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+o0’-1 42

Z Z dk,m102koo”+m

m=—co" k=-2

+500" -1

> dylom

m=-5w"

In the n-th unfolding,

+o0"-1  +n

r= Z Z dk,mlozkoo”wLm

m=-o" k=-n

+(2n+1)c0” -1

>, dnlo™

m=—(2n+1)co”

In the ultimate unfolding, n = cc.

Successor operation

The folded real numbers R are defined from the rational numbers Q,
which in turn are defined from the integers Z, and these are defined from the
natural numbers N. The natural numbers are often defined with the successor
function S(n) := n + 1. The whole structure of the real numbers can thus be
built on the foundation of the successor function.

The unfolded real numbers can be built on nearly the same foundation,
namely an unfolded successor function that distinguishes n from n + 1 for both
finite and infinite n. This leads immediately to the first unfolding, but, as we
have seen above, all unfoldings following from the first.
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Limitation of microscopes

fe) 4 </
%

fx) +

-

X1 X2

FIG. 43:
Microscopes of unfolded space
at two points in the graph of f(x)

Figure 43 shows typical microscope views of unfolded space within two
points in the graph of f(x). We have used this type of microscope to calculate
the first derivative (p. 31). As long as we are not looking at some kind of
singularity, a function f(x) appears curved outside the microscope but straight
within it. We used the fact of straighness within an unfolded space to draw an
analogy to the slope of a straight line in folded space and thus calculate the
derivative.

The straightness of this line can be misleading. In folded space, the
derivative of a straight line is constant and the second derivative is zero. This
could lead us to think that the second derivative of a curve such as the one
in Figure 43 is constant and the third derivative is zero. In fact, the slope of
this curve deviates infinitesimally from a straight line, but this is not visible at
infinite magnification. By the time the curve moves from x; to x;, for instance,
this infinitesmial deviation adds up to a clearly nonzero change in slope.
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CONVERGENT SERIES PARADOX

In equipoint analysis, infinite series and definite integrals are both sim-
ple sums with an infinite number of terms. In a definite integral, all the terms
are zero, while in an infinte series, an infinite number of terms are nonzero.
When the terms can be directly compared, this may lead to a paradoxical con-
dition wherein both a series and an integral yield a finite result. For example,
consider that

[ 1 oo
2
Zz-"=1<f 2dx =) — =2,
n=1 0 =1 ®
even though, if we look at individual terms,

2y 2
00

for all n, with equality holding only for infinite 7.

In the numerisitic theory of infinite series, we find that convergent se-
ries such as the one above actually have two values, one finite and one infinite.
The infinite value arises when we consider the series to be an infinite sum of
strictly positive values, and the finite value comes from the identification of
+oo and —oo in the projectively extended real numbers. This is explained in
detail in [CD] and [CR].
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QUANTUM RENORMALIZATION

Renormalization is a procedure used in quantum physics to “tame”
infinities that occur in quantum formulas. The correctness of values derived
through renormalization is well verified experimentally, but the mathematics
of this procedure is poorly understood, and therefore its theoretical validity is
controversial.

Equipoint analysis should improve the understanding of quantum
renormalization. The following example may show this. Although realistic
examples of quantum renormalization usually involve very difficult formulas,
we use here a very simplified example given by Klauber [K14, p. 305]. The
problem is to evaluate

J‘ x* dx.

In conventional analysis, this evaluation is done in two main steps, reg-
ularization and renormalization. In this example, the regularized form is
A

lim x% dx.
A—o0 _A

This still diverges, so we renormalize by multiplying by the factor .
Then we have

A
lim LJ‘ xzdx:;

A—o0 A3 _A
In equipoint analysis, we avoid limits and directly write
1~ 2

; x*dx ==.
wl —0' 3

We can also separate the factor # from the integral and evaluate these
expressions separately as infinite quantities.

See also [T99, ch. 18] and [D04] for elementary introductions to quan-
tum renormalization.
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APPENDIX: COMPARISON
OF EQUIPOINT WITH OTHER
THEORIES OF ANALYSIS

Comparison of equipoint and conventional analysis

Differences

140

The differences between equipoint analysis and conventional limit-
based analysis have been observed throughout this document. Here we sum-
marize these differences.

Conventional analysis

e There are no infinite values.

e Every expression is single val-

ued.

As a result of the previous two
points, some operations are left
undefined or regarded as mean-
ingless.

Infinite and infinitesimal quan-
tities are handled indirectly
through limits.

Many proofs of simple results
are difficult.

Equipoint analysis

e There are one or more infinite

numeric values at the folded
level.

An expression can represent a
single value or a multivalued
numeristic class.

As a result of the previous two
points, all operations are de-
fined. An expression which is
syntactically correct has a value
and is never regarded as mean-
ingless.

Infinite and infinitesimal quan-
tities are handled directly through
an extended multiple-level num-
ber system.

e Many proofs are short and easy.

Equipoint Analysis



e The Leibnitz derivative and e The Leibnitz derivative and
Riemann integral cannot be Riemann integral suffice for any
used in some cases, giving rise real or complex function.
to the need for constructs such
as the Lebesgue integral.

Examples

Below are definitions and examples of the derivative and definite inte-
gral in coventional limit-based analysis. For equipoint equivalents, see Defini-
tion of derivative (p. 31) and Definition of definite integral (p. 33) above.

Conventional definition of derivative:
) _ [ = f )

dx h—0

Sample application of this definition:

dx? _ lim (x + h)? - x?
dx B h—0 h
. x%+2xh + h? - x?
= lim
h—0 h
_ lim 2xh + h?
B h—0 h
=lim(2x + h)
h—0

= 2x.

Conventional definition of definite integral:

’ Y k(b-a)\ b-a
faf(x)dx—$ﬂ§f<a+ N > N

Sample application of this definition:

u N
) ku u
J‘O 2x dx = ]l[lil’olo ~ 2NN

> N
= lim ziZk
k=1

N—owo N2
o 2u: . N+1
= im =N
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= lim u?
N—oo

= uz.

(%)

Comparison of equipoint and nonstandard analysis

Similarities

Equipoint analysis has much in common with nonstandard analysis

and has borrowed many of its concepts.
Nonstandard analysis

e Nonstandard values around a
standard point.

e Nonstandard infinite values which
are reciprocals of nonstandard
infinitesimal values.

e Microscope diagram of non-
standard values.

e Equality relation =.

e Approximate equality relation

~
=.

Differences

Nonstandard analysis
e Set theoretic foundation.

e Every expression is single val-
ued.

142

Equipoint analysis

Unfolded values within a folded
point.

Unfolded infinite values which
are reciprocals of unfolded in-

finitesimal values.

Microscope diagram of unfolded
values.

Equivalence relation =.

Folded equality relation =.

Equipoint analysis
Number based foundation.

An expression can represent a
single value or a multivalued
numeristic class.

Equipoint Analysis



Two levels of sensitivity: stan-
dard and nonstandard.

There are no standard infinite
values.

Division by zero is not allowed.

Some operations are left unde-
fined or regarded as meaning-
less.

Conversion from nonstandard
to standard is handled by the
standard part function.

The standard part of nonstan-
dard infinite values is unde-
fined.

Two infinite values are approxi-
mately equal only if their differ-
ence is infinitesimal. Thus for
an infinite H, H # H + 1.

) 1. .
The function p is not continu-
ous at 0.

The function 2x is not continu-
ous at infinite values.

Infinite number of levels of sen-
sitivity: one folded, and the rest
unfolded.

There are one or more infinite
numeric values at the folded
level.

One or more folded infinite val-
ues and multivalued expres-
sions allow division by zero.

All operations are defined.

Conversion from unfolded to
folded is handled by the equal-
ity relation.

Unfolded infinite values are
folded into an infinite value.

Two infinite values are equal if
they fold to the same infinite el-
ement. Thus, for an infinite a,
a=a+1.

1
The function - is continuous at

0 on at least one side.

The function 2x is continuous at
infinite values.

For source material on nonstandard analysis, see [R74], [KE] and [KF].

Examples

Below are definitions and examples of the derivative and definite in-
tegral in nonstandard analysis. For equipoint equivalents, see Definition of
derivative (p. 31) and Definition of definite integral (p. 33) above.
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Nonstandard definition of derivative:
df (x) (f(X+€) —f(x)>
= st ,
dx £
where ¢ is an infinitesimal, which in nonstandard analysis is nonzero but
smaller than all nonzero reals, and st() is the standard part function, which
maps a number of the form a + ¢ to a, where a is real.

Sample application of this definition:

d_x2 St<(x+s)2—x2>

dx £

x2 4+ 2xe + €2 — x?
st
€

<2x5+52>
=st
€

=st(2x + £)
= 2x.

Nonstandard definition of definite integral:

Kf(x)dx:st<zf< LGS a)) - )

where H is an infinite number, the reciprocal of an infinitesimal.

Sample application of this definition:
u H
ku u
fo 2x dx = st <Z 2ﬁﬁ>

(5 20)
st<§{2H > )
= st <u2 <1 + %))

=st(u*(1+¢))

= uz.

::

=~
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Stroyan’s uniform derivative

Stroyan’s system of analysis is a variant of nonstandard analysis. One
of its main features is the uniform derivative, which is defined over an interval
and contrasts with the usual nonstandard derivative, which Stroyan calls the
pointwise derivative.

Stroyan gives several equivalent definitions of the uniform derivative,
the first of which is as follows. A real function f(x) has a derivative f'(x) on
the interval (a, b) iff for every hyperreal x such thata < x <b, x # a, x # b, and
ox =0,

flx+06x) - f(x) = f'(x)6x +¢-6x
for some € = 0 [S97, p. 54].

Comparison of equipoint and Fermat’s adequality

Fermat’s adequality is one of several 17th century antecedents to calcu-
lus. Other systems were developed by Cavalieri and Wallis, but Fermat’s was
the first known general method for determining extrema.

Fermat described his method in a manuscript written about 1636 and
published in 1679 [Fe79]. Both Newton and Leibnitz acknowledged Fermat’s
adequality as an antecedent of their own work.

Fermat said that adequality derived from a technique used by the Greek
mathematician Diophantus, who called it tapio6tng parisotes, but Diophantus
used this word only to mean approximation.

Similarities
Fermat adequality Equipoint analysis
e Uses the adequality relation to e Uses the equality relation to
convert a finite difference into convert an unfolded quantity
an instantaneous difference. into a folded quantity.
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e Uses a term e which the ade-

quality relation discards when
added to another quantity.

Differences

Fermat adequality

Used only for computing max-
ima and minima.

Suitable only for polynomial
functions.

Does not define a derivative or
integral but uses a procedure
which is algebraically equiva-
lent to computing a derivative
and setting it to zero.

Adquality is stated in formal
terms with little justification.
The nature of adequality and
the reason it discards the special
term e are not made clear.

Outline and example

146

Uses an unfolded element 0
which the equality relation dis-
cards when added to another
quantity.

Equipoint analysis

Used for a wide variety of ap-
plications.

Suitable for any type of func-
tion.

Defines a derivative and an in-
tegral which are used in many
different ways.

Sensitivity and multilevel equal-
ity are defined and explained in
both formal and informal terms
which make its nature and ap-
plication clear.

Fermat’s method for finding a maximum or minimum of f(x):

1. Ad-equate f(x) and f(x +e).

2. Simplify as you would with equality, including dividing both
sides by e, until there is at least one term that does not con-

tain e.

3. Discard terms containing e.

4. Convert the adequation to an equation.

Equipoint Analysis



Fermat gave the following example to find the maximum of bx — x2.

The adequality relation is denoted .

bx — x> ~ b(x +e) - (x + e)* = bx + be — x* - 2xe + €*
0 v be —2xe + é*

be « 2xe — €*

bw2x-e

b=2x.

Comparison of equipoint and ultrasmall/relative analysis

Similarities
Relative analysis Equipoint analysis

e Multiple layers of numbers. e Multiple levels of sensitivity.

e Ultrasmall and ultralarge num- e Unfolded infinitesimal and infi-
bers. nite numbers.

e Equalityis relative to a given e Equality is relative to a given
level, a proper class often de- level, an infinitesimal often de-
noted V, and the equality de- noted (', and the equality de-
noted =y. noted ='.

e Variables “appear” at certain e Values become distinguishable
levels. at certain levels.
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Differences

Relative analysis

Set theoretic foundation, to
which is added a new set the-
oretic relation which is used
to build set theoretic proper
classes of numbers, which are
formed into layers.

Every expression is single val-
ued.

There are no real infinite values.

Division by zerois not allowed.

Some operations are left unde-
fined or regarded as meaning-
less.

Equipoint analysis

Number based foundation, to
which is added the principle of
unfolding a point into layers of
sensitivity.

An expression can represent a
single value or a multivalued
numeristic class.

There are one or more infinite
real values at the folded level.

One or more folded infinite val-
ues and multivalued expres-
sions allow division by zero.

All operations are defined.

For source material on relative analysis, see [H10], [OD09], and [OD11].

Examples

Relative analysis definition of derivative:
: (x +h) - f(x)
i s=n (L0210

where n(x) or ny(x) denotes the neighbor of x, the unique real number ultra-
close to x atlevel V.

4

Relative analysis definition of definite integral:

b N-1
f fx)dx = n (Z f<xi>h> ,
a i=0
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for h ultrasmall and N ultralarge, h := ”‘Ta and x; := a + ih.

For equipoint equivalents, see Equipoint definition of derivative (p.
31) and Equipoint definition of definite integral (p. 33).

Comparison of equipoint and smooth infinitesimal analysis

Similarities

Smooth infinitesimal analysis Equipoint analysis

e Simple algebra of infinitesmial e Simple algebra of infinitesmial
operations. operations.
Differences

Smooth infinitesimal analysis
Intuitionistic logic.
A single level of equality.

Every expression is single val-
ued.

There are no infinite values.

Division by zero or infinitesi-
mals is not allowed.

Some operations are left unde-
fined or regarded as meaning-
less.

Indirect definition of derivative
and integral.

Appendix

Equipoint analysis
Classical logic.
Multiple levels of equality.

An expression can represent a
single value or a multivalued
numeristic class.

There are one or more infinite
values at folded and unfolded
levels.

Division by zero and infinitesi-
mals is allowed.

All operations are defined.

Direct definition of derivative
and integral.
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e The square of an infinitesimal ¢ e An infinitesimal (' has an infi-
is 0. nite number of powers which
are distinguishable at various

levels of sensitivity.

For source material on smooth infinitesimal analysis, see [BI], [BP], and
[La].

Smooth infinitesimal definitions

Smooth infinitesimal analysis has two postulates for infinitesimals:

(3'D)(Ye)f(e) = f(0) + D
[(Ve)ea=¢eb]=a=Db

Using intuitionistic logic, these postulates imply € # 0 and -~ (¢ # 0),
but the second is not equivalent to € = 0, i.e. € equality does not obey the law
of excluded middle. These postulates also imply £ = 0, i.e. infinitesimals are
nilpotent.

This approach leads to formulae such as

flx+e) - f(x) =ef'(x)
as the definition of derivative, which is only implicit and has to be proved to
exist. Since there is no division by infinitesimals, we cannot use notation such

flx+¢e) - f(x)
- )

dy ey -
asgorf(x)—

Integration is even less direct, being given not by a formula but by an
Integration Principle: Given a smooth function f : [0,1] — R, there exists a
unique smooth function g : [0,1] — R, such that ¢’ = f and g(0) = 0.

The equipoint equivalents of these definitions are explicit formulas
given in Definition of derivative (p. 31) and Definition of definite integral

(p- 33).
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